Skip to main content
Log in

Investigation of the Phase Composition and Analysis of the Properties of Sintered and Hot-Pressed Materials Based on Silicon Nitride

  • Published:
Refractories and Industrial Ceramics Aims and scope

This research analyzes the methods for producing silicon nitride and the properties of initial powders. The main methods for obtaining materials based on silicon nitride are described. Liquid-phase sintering and hot pressing were used to develop dense materials based on silicon nitride. As a sintering additive, 3 – 10 wt.% and 5 – 20 wt.% of yttrium-aluminum garnet were used for hot-pressed and sintered materials, respectively. The mechanical properties (modulus of elasticity, bending strength, fracture resistance, and Vickers hardness) of sintered and hot-pressed materials have been studied. Maximum properties were obtained with sintered materials containing 15% oxides and hot-pressed materials containing 10% oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J. Briggs, Engineering Ceramics in Europe and the USA, Enceram, Menith Wood, Worcester (2011).

  2. E. J. Hierra, J. A. Salazar, Silicon Nitride: Synthesis, Properties and Applications, Nova Science Publishers, Incorporated (2012).

  3. M. J. Hoffmann, G. Petzow, “Tailoring of mechanical properties of Si3N4 ceramics,” Springer Science & business media, 276, 450 (2012). DOI: https://doi.org/10.1007/978-94-011-0992-5.

  4. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, and M. V. Tomkovich, “Microstructure and mechanical properties of SiC materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Ind. Ceram., 58(5), 577 – 582 (2018). DOI: https://doi.org/10.1007/s11148-018-0148-x.

    Article  Google Scholar 

  5. S. N. Perevislov, D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7/8), 249 – 252 (2016). DOI: https://doi.org/10.1007/s10717-016-9867-y.

    Article  Google Scholar 

  6. S. N. Perevislov, O. A. Lukyanova, A. S. Lysenkov, et al., “Sintering and physico-mechanical properties of materials based on silicon nitride nanoscale powders,” IOP Conf. Series: Mater. Sci. Eng., 848, 012068 (2020). DOI: https://doi.org/10.1088/1757-899X/848/1/012068.

    Article  Google Scholar 

  7. V. M. Sleptsov, O. D. Shcherbina, V. A. Stignyak, et al., “Characteristics of the microstructure and strength of silicon nitride with the addition of rare earth oxides,” Poroshkov. Metallurg., No. 11, 55 – 59 (1978).

    Google Scholar 

  8. M. G. Frolova, A. V. Leonov, Y. F. Kargin, et al., “Molding features of silicon carbide products by the method of hot slip casting,” Inorg. Mater.: Appl. Res., 9(4), 675 – 678 (2018). DOI: https://doi.org/10.1134/S2075113318040123.

    Article  Google Scholar 

  9. O. A. Lukianova, A. N. Khmara, S. N. Perevislov, et al., “Electrical resistivity of silicon nitride produced by various methods,” Ceram. Int., 45(7), 9497 – 9501 (2019). DOI: https://doi.org/10.1016/j.ceramint.2018.09.198.

    Article  Google Scholar 

  10. S. N. Perevislov, M. A. Markov, Y. A. Kuznetsov, et al., “Thermal conductivity of the materials based on silicon carbide and silicon nitride,” Russian Metallurgy (Metally), 2020(13), 1477 – 1484 (2020). DOI https://doi.org/10.1134/S0036029520130297.

    Article  Google Scholar 

  11. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Production of ceramic materials based on SiC with low-melting oxide additives,” Glass Ceram., 75(9/10), 400 – 407 (2019). DOI: https://doi.org/10.1007/s10717-019-00094-6.

    Article  Google Scholar 

  12. D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordan’yan, and S. N. Perevislov, “Precipitation of the eutectic Al2O3–ZrO2(Y2O3) on the surface of SiC particles,” Glass Ceram., 74(1/2), 43 – 47 (2017). DOI: https://doi.org/10.1007/s10717-017-9925-0.

  13. A. S. Lysenkov, K. A. Kim, D. D. Titov, et al., “Composite material Si3N4/SiC with calcium aluminate additive,” J. Phys.: Conf. Series. IOP Publishing, 1134(1), 012036 (2018). DOI: https://doi.org/10.1088/1742-6596/1134/1/012036.

    Article  Google Scholar 

  14. Y. F. Kargin, A. S. Lysenkov, K. A. Kim, et al., “Synthesis the composites Si3N4–TiN by hot pressing,” IOP Conf. Series: Mater. Sci. Eng., 525, No. 1, 012083 (2019). DOI: https://doi.org/10.1088/1757-899x/525/1/012083.

  15. K. A. Kim, A. S. Lysenkov, D. D. Titov, et al., “Rheological properties of Si3N4 and Si3N4 with sintering additive CaO–Al2O3 powders,” IOP Conf. Series: Mater. Sci. Eng., 848, 012032 (2020). DOI: https://doi.org/10.1088/1757-899X/848/1/012032.

    Article  Google Scholar 

  16. A. S. Lysenkov, S. N. Ivicheva, D. D. Titov, et al., “Silicon nitride ceramics with light- melting sintering additive in CaO–TiO2 system,” IOP Conf. Series: Mater. Sci. Eng., 525(1), 012080 (2019). DOI: https://doi.org/10.1088/1757-899X/525/1/012080.

    Article  Google Scholar 

  17. V. V. Zakorzhevsky, “Aspects of synthesis of α-Si3N4-(MgO, Y2O3) compositions in the combustion mode,” Poroshkov. Metallurg., No. 1/2, 10 – 14 (2007).

  18. I. Yu. Kelina, L. A. Plyasunkova, and N. I. Ershova, “Aspects of structure formation and properties of composite ceramics in the Si3N4–Al2O3 system,” Ogneup. Tekhnich. Keram., No. 7, 7 – 10 (1996).

    Google Scholar 

  19. I. Yu. Kelina, L. A. Plyasunkova, “Applicability criteria for various silicon nitride powders in hot pressing technology for obtaining high-density and strong materials,” Ogneup. Tekhnich. Keram., No. 12, 22 – 26 (2000).

    Google Scholar 

  20. V. V. Vikulin, “Production of Si3N4 products and their application in the aerospace industry,” Perspekt. Mater., No. 5, 14 – 19 (2006).

    Google Scholar 

  21. W. Engel, “Starting powder requirements for hot pressing of silicon nitride,” Powd. Met. Intern, 10(3), 124 – 127 (1978).

    Google Scholar 

  22. S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7/8), 265 – 268 (2013). DOI: https://doi.org/10.1007/s10717-013-9557-y.

    Article  Google Scholar 

  23. R. A. Andrievsky, I. I. Spivak, Silicon Nitride and Silicon Nitride-Based Materials, Metallurgiya, Moscow (1984).

    Google Scholar 

  24. G. G. Gnesin, Oxygen-Free Ceramic Materials, Tekhnika, Kyiv (1987).

    Google Scholar 

  25. G. G. Gnesin, I. Osipova, “Hot-pressed materials based on silicon nitride,” Poroshkov. Metallurg., No. 4, 32 – 45 (1981).

    Google Scholar 

  26. M. J. Hoffmann, “Analysis of microstructural development and mechanical properties of Si3N4 ceramics,” Tailoring of mechanical properties of Si3N4 ceramics, 59 – 72 (1994). DOI: https://doi.org/10.1007/978-94-011-0992-54.

  27. M. H. Bocanegra-Bernal, B. Matovic, “Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures,” Mater. Sci. Eng., A., 527(6), 1314 – 1338 (2010). DOI: https://doi.org/10.1016/j.msea.2009.09.064.

    Article  Google Scholar 

  28. A. K. Mallik, N. C. Acikbas, F. Kara, et al., “A comparative study of SiAlON ceramics,” Ceram. Int., 38, No. 7, 5757 – 5767 (2012). DOI: https://doi.org/10.1016/J.CERAMINT.2012.04.022.

    Article  Google Scholar 

  29. S. Hampshire, “Silicon nitride ceramics-review of structure, processing and properties,” Journal of achievements in materials and manufacturing engineering, 24(1), 43 – 50 (2007).

    Google Scholar 

  30. X. Xu, T. Nishimura, N. Hirosaki, et al., “New strategies for preparing nanosized silicon nitride ceramics,” J. Am. Ceram. Soc., 88(4), 934 – 937 (2005). DOI: https://doi.org/10.1111/j.1551-2916.2005.00187.x.

    Article  Google Scholar 

  31. A. Zerr, M. Kempf, M. Schwarz, et al., “Elastic moduli and hardness of cubic silicon nitride,” J. Am. Ceram. Soc., 85(1), 86 – 90 (2002). DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00044.x.

    Article  Google Scholar 

  32. A. Sayyadi-Shahraki, S. M. Rafiaei, S. Ghadami, and K. A. Nekouee, “Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nanocomposites,” J. Alloys Compds, 776, 798 – 806 (2019). DOI: https://doi.org/10.1016/J.JALLCOM.2018.10.243.

    Article  Google Scholar 

  33. Q. G. Jiang, W. M. Guo, W. Liu, et al., “Influence of powder characteristics on hot-pressed Si3N4 ceramics,” Sci. Sinter, 49(1), 81 – 89 (2017). DOI: https://doi.org/10.2298/SOS1701081J.

    Article  Google Scholar 

  34. K. Berroth, “Silicon nitride ceramics for product and process innovations,” Adv. Sci. Technol., 65, 70 – 77 (2010). DOI: https://doi.org/10.4028/www.scientific.net/AST.65.70.

    Article  Google Scholar 

  35. S. N. Perevislov, “Sintering behavior and properties of reaction- bonded silicon nitride,” Russ. J. Appl. Chem., 94(2), 143 – 151 (2021). DOI: https://doi.org/10.1134/S1070427221020038.

    Article  Google Scholar 

  36. D. D. Nesmelov, S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015). DOI: https://doi.org/10.1007/s10717-015-9677-7.

    Article  Google Scholar 

  37. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Reinforced composite materials based on silicon carbide and silicon nitride,” IOP Conf. Series: Mater. Sci. Eng. IOP Publishing, 525(1), 012072 (2019). DOI: https://doi.org/10.1088/1757-899X/525/1/012072.

    Article  Google Scholar 

  38. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic SiC-YAG materials,” Inorg. Mater., 53(2), 220 – 225 (2017). DOI: https://doi.org/10.1134/S0020168517020091.

    Article  Google Scholar 

  39. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “High density boron carbide ceramics,” Refract. Ind. Ceram., 59(1), 32 – 36 (2018). DOI: https://doi.org/10.1007/s11148-018-0178-4.

    Article  Google Scholar 

  40. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “Phase composition and microstructure of reaction-bonded boron-carbide materials,” Refract. Ind. Ceram., 59(2), 179 – 183 (2018). DOI: https://doi.org/10.1007/s11148-018-0202-8.

    Article  Google Scholar 

  41. S. N. Perevislov, “Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials,” Refract. Ind. Ceram., 60(2), 168 – 173 (2019). DOI: https://doi.org/10.1007/s11148-019-00330-0.

    Article  Google Scholar 

  42. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Materials based on boron carbide obtained by reaction sintering,” IOP Conf. Series: Mater. Sci. Eng. IOP Publishing, 525(1), 012074 (2019). DOI: https://doi.org/10.1088/1757-899X/525/1/012074.

    Article  Google Scholar 

  43. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017). DOI: https://doi.org/10.1134/S0020168517040148.

    Article  Google Scholar 

  44. S. N. Perevislov, V. S. Slabov, I. B. Panteleev, et al., “Chemical resistance of liquid-phase-sintered materials based on Si3N4–BN,” Glass Ceram., 76(11/12), 451 – 456 (2020). DOI: https://doi.org/10.1007/s10717-020-00221-8.

    Article  Google Scholar 

  45. A. S. Shatalin, A. G. Romashin, “New structural materials based on ceramics and ceramic matrix composites. Part 1. Structural ceramic materials,” Perspektiv. Mater., No. 4, 5 – 16 (2001).

  46. Z. Krstic, V. D. Krstic, “Silicon nitride: the engineering material of the future,” J. Mater. Sci., 47(2), 535 – 552 (2012). DOI: https://doi.org/10.1007/s10853-011-5942-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 18 – 26, February, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N. Investigation of the Phase Composition and Analysis of the Properties of Sintered and Hot-Pressed Materials Based on Silicon Nitride. Refract Ind Ceram 63, 66–73 (2022). https://doi.org/10.1007/s11148-022-00682-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00682-0

Keywords

Navigation