Skip to main content
Log in

Synthesis and Research of Aluminum Oxide Additives for Refractory Composite Materials

  • Published:
Refractories and Industrial Ceramics Aims and scope

Hollow Al2O3 microspheres were synthesized by spray pyrolysis and investigated by x-ray phase analysis, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The analytical results demonstrate that the aluminum oxide microspheres are hollow. The size of the microspheres varies from 5 to 10 μm. The dependence of the specific surface area and the size of the microspheres on the synthesis temperature was determined. The wall thickness of the microspheres depends on their diameter and varies from 50 to 200 nm. The paper shows the possibility of using microspheres as an additive for refractory castable and products based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. B. Long, B. Andreas, and G. Xu, “Thermodynamic evaluation and properties of refractory materials for steel ladle purging plugs in the system Al2O3–MeO–CaO,” Ceram. Int., 42, 11930 – 11940 (2016). https://doi.org/10.1016/j.ceramint.2016.04.118.

    Article  CAS  Google Scholar 

  2. M. E. Davis, “Ordered porous materials for emerging applications,” Nature, 417(6891), 813 – 821 (2002). https://doi.org/10.1038/nature00785.

    Article  CAS  Google Scholar 

  3. Q. K. Tran, S. Han, et al., “Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spray-pyrolysis-derived spherical γ-Al2O3–SiO2 catalysts”, J. Ind. Eng. Chem., 92, 243 – 251 (2020). https://doi.org/10.1016/j.jiec.2020.09.012.

    Article  CAS  Google Scholar 

  4. R. A. Raimundo, K. V. A. Santos, et al., “Effect of high energy milling on microstructure and mechanical properties of Al2O3 – 10 wt% Co composites consolidated by spark plasma sintering (SPS),” Ceram. Int., 47(1), 677 – 685 (2021). https://doi.org/10.1016/j.ceramint.2020.08.176.

    Article  CAS  Google Scholar 

  5. I. Shon, “Rapid consolidation of nanostructured Mo-Al2O3 composite from mechanically synthesized powders,” Ceram. Int., 44, 2587 – 2592 (2018). https://doi.org/10.1016/j.ceramint.2017.10.120.

    Article  CAS  Google Scholar 

  6. K. Konopka and A. Ozieblo, “Microstructure and the fracture toughness of the Al2O3-Fe composites,” Mater. Charact., 46, 125 – 129 (2001). https://doi.org/10.1016/S1044-5803(01)00113-9.

    Article  CAS  Google Scholar 

  7. M. A. Taha, A. H. Nassar, and M. F. Zawrah, “Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying,” Ceram. Int., 43, 3576 – 3582 (2017). https://doi.org/10.1016/j.ceramint.2016.11.194.

    Article  CAS  Google Scholar 

  8. B. Aslibeiki and P. Kameli, “Structural and magnetic properties of Co/Al2O3 cermet synthesized by mechanical ball milling,” Ceram. Int., 46, No. 12, 20116 – 20121 (2020). https://doi.org/10.1016/j.ceramint.2020.05.086.

    Article  CAS  Google Scholar 

  9. M. F. Zawrah, H. A. Zayed, R. A. Essawy, et al., “Preparation by mechanical alloying, characterization and sintering of Cu–20 wt.% Al2O3 nanocomposites,” Mater. Des., 46, 485 – 490 (2013). https://doi.org/10.1016/j.matdes.2012.10.032.

    Article  CAS  Google Scholar 

  10. F. Karimzadeh, M. H. Enayati, and M. Tavoosi, “Synthesis and characterization of Zn/Al2O3 nanocomposite by mechanical alloying,” Mater. Sci. Eng., A, 486(1–2), 45 – 48 (2008). https://doi.org/10.1016/j.msea.2007.08.059.

    Article  CAS  Google Scholar 

  11. M. Goudarzi and M. Salavati-Niasari, “Using pomegranate peel powders as a new capping agent for synthesis of CuO/ZnO/Al2O3 nanostructures; enhancement of visible light photocatalytic activity,” Int. J. Hydrogen Energy, 43(31), 14406 – 14416 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.034.

    Article  CAS  Google Scholar 

  12. I. Shon, “Mechanochemical synthesis and consolidation of a nanostructured B-Al2O3 hard composite by high-frequency induction-heated sintering,” Ceram. Int., 43(1), 1612 – 1616 (2017). https://doi.org/10.1016/j.ceramint.2016.10.089.

    Article  CAS  Google Scholar 

  13. I. Shon, “Mechanical synthesis and rapid consolidation of nanostructured FeAl-Al2O3 composites by high-frequency induction heated sintering,” Ceram. Int., 38(7), 6035 – 6039 (2012). https://doi.org/10.1016/j.ceramint.2012.03.073.

    Article  CAS  Google Scholar 

  14. N. Samotaev, “Al2O3 nanostructured gas sensitive material for silicon based low power thermocatalytic sensor,” Mater. Today: Proc., 30, 443 – 447 (2020). https://doi.org/10.1016/j.matpr.2019.12.393.

    Article  CAS  Google Scholar 

  15. J. Zhang, J. He, et al., “Microstructure and properties of Al2O3 – 13% TiO2 coatings sprayed using nanostructured powders,” Rare Met., 26(4), 391 – 397 (2007). https://doi.org/10.1016/S1001-0521(07)60234-4.

    Article  Google Scholar 

  16. N. Romcevic, B. Hadzic, et al., “Structural and optical properties of ZnO-Al2O3 nanopowders prepared by chemical methods,” J. Lumin., 224, 117273 (2020). https://doi.org/10.1016/j.jlumin.2020.117273.

    Article  CAS  Google Scholar 

  17. A. I. Kostyukov, A. V. Zhuzhgov, et al., “Photoluminescence of oxygen vacancies in nanostructured Al2O3,” Opt. Mater., 75, 757 – 763 (2018). https://doi.org/10.1016/j.optmat.2017.11.040.

    Article  CAS  Google Scholar 

  18. D. S. Suvorov, B. B. Khaidarov, D. V. Lysov, et al., “Nanomodification of refractories with finely-dispersed additives with the use of a vortex electromagnetic homogenizer,” IOP Conf. Ser.: Mater. Sci. Eng., 718, 012018 (2020). https://doi.org/10.1088/1757-899X/718/1/012018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Suvorov.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 35 – 40, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvorov, D.S., Yudin, A.G., Khaidarov, B.B. et al. Synthesis and Research of Aluminum Oxide Additives for Refractory Composite Materials. Refract Ind Ceram 62, 535–540 (2022). https://doi.org/10.1007/s11148-022-00638-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00638-4

Keywords

Navigation