Skip to main content
Log in

Composite Zircon Ceramics Based on Raw Materials Activated by Ammonium Bifluoride

  • Published:
Refractories and Industrial Ceramics Aims and scope

The paper presents the results of studying the processes of synthesizing baddeleyite-zircon ceramics based on fluorinated plasma dissociated and natural zircon. It was found that obtaining densely sintered ceramics based on fluorinated natural zircon requires the addition of CaO to stabilize free ZrO2 contained in it. The addition of Y2O3 to the plasma dissociated zircon-based ceramic materials makes it possible to reduce the sintering temperature from 1,600 to 1,500°C. Obtaining highly fluorinated plasma dissociated zircon-based ceramics is complicated due to the formation of excessive amount of ZrF4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. F. Nakamori, Y. Ohishi, H. Muta, et al., “Mechanical and thermal properties of ZrSiO4,” J. Nucl. Sci. Techn., 54(11), 1267 – 1273 (2017). https://doi.org/10.1080/00223131.2017.1359117.

    Article  CAS  Google Scholar 

  2. J. Varghese, T. Joseph, and M. T. Sebastian, “ZrSiO4 ceramics for microwave integrated circuit applications,” Mater. Lett., 65(7), 1092 – 1094 (2011). https://doi.org/10.1016/j.matlet.2011.01.020.

    Article  CAS  Google Scholar 

  3. G. N. Maslennikova and I. V. Pishch, Ceramic Pigments, 2nd ed. [in Russian], OOO RIF “Stroymaterialy,” Moscow (2009).

  4. Y. Shi, X. Huang, and D. Yan, “Synergetic strengthening and toughening of zircon ceramics by the additions of SiC whisker and 3Y-TZP simultaneously,” J. Eur. Ceram. Soc., 17(8), 1003 – 1010 (1997). https://doi.org/10.1016/S0955-2219(96)00185-9.

    Article  CAS  Google Scholar 

  5. Y. Shi, X. Huang, and D. Yan, “Mechanical properties and toughening behavior of particulate-reinforced zircon matrix composites,” J. Mater. Sci. Lett., 18, 213 – 216 (1999). https://doi.org/10.1023/A:1006672131378.

    Article  CAS  Google Scholar 

  6. C. Wang, Q. Wang, K. Liu, et al., “Synthesis, characterization and application of submicron ZrSiO4 powder via sol-gel-microemulsion-hydrothermal method,” J. Alloys Compds., 828, 1 – 11 (2020). https://doi.org/10.1016/j.jallcom.2020.154332.

    Article  CAS  Google Scholar 

  7. N. M. Rendtorff, S. Grasso, C. Hu, et al., “Zircon-zirconia (ZrSiO4-ZrO2) dense ceramic composites by spark plasma sintering,” J. Eur. Ceram. Soc., 32(4), 787 – 793 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.021.

    Article  CAS  Google Scholar 

  8. Y. Shi, X. Huang, and D. Yan, “Fabrication of hot-pressed zircon ceramics: mechanical properties and microstructure,” Ceram. Int., 23(5), 457 – 462 (1997). https://doi.org/10.1016/S0272-8842(96)00057-0.

    Article  CAS  Google Scholar 

  9. L. D. Kock, M. D. S. Lekgoathi, E. Snyders, et al., “The determination of percentage dissociation of zircon (ZrSiO4) to plasma-dissociated zircon (ZrO2·SiO2) by Raman spectroscopy,” J. Raman Spectr., 43, 769 – 773 (2012). https://doi.org/10.1002/jrs.3090.

    Article  CAS  Google Scholar 

  10. N. M. Rendtorff, G. Suarez, M. S. Conconi, et al., “Plasma dissociated zircon (PDZ) processing; influence of the Zr:Si ratio in the composition, microstructure and thermal re-crystallization,” Procedia Materials Science, 1, 337 – 342 (2012). https://doi.org/10.1016/j.mspro.2012.06.045.

    Article  CAS  Google Scholar 

  11. S. Yugeswaran, P. V. Ananthapadmanabhan, T. K. Thiyagarajan, et al., “Plasma dissociation of zircon with concurrent in-flight removal of silica,” Ceram. Int., 41(8), 9585 – 9592 (2015). https://doi.org/10.1016/j.ceramint.2015.04.020.

    Article  CAS  Google Scholar 

  12. R. McPherson, R. Rao, and B. V. Shafer, “The re-association of plasma dissociated zircon,” J. Mater. Sci., 20, 2597 – 2602 (1985). https://doi.org/10.1007/BF00556091.

    Article  CAS  Google Scholar 

  13. R. C. Garvie, “Improved thermal shock resistant refractories from plasma-dissociated zircon,” J. Mater. Sci., 14, 817 – 822 (1979). https://doi.org/10.1007/BF00550712.

    Article  CAS  Google Scholar 

  14. J. P. H. Williamson and D. E. Lloyd, “The characterization of ceramic bodies produced from plasma dissociated zircon,” J. Mater. Sci., 16, 1264 – 1272 (1981). https://doi.org/10.1007/BF01033841.

    Article  CAS  Google Scholar 

  15. T. V. Vakalova, V. V. Kravchenko, and V. V. Gorbatenko, “Physico-chemical features of the synthesis of mullite in mixtures of quartz-pyrophyllite rock with a fluoride-forming component,” Refract. Ind. Ceram., 55, 2, 131 – 136 (2014).

    Article  CAS  Google Scholar 

  16. T. V. Vakalova, V. I. Vereshchagin, V. V. Gorbatenko, et al., “The use of topaz-containing raw materials in the technology of alumino-silicate refractories,” Ogneupory i Tekhnicheskaya Keramika, No. 9, 42 – 47 (2007).

  17. A. A. Smorokov and R. I. Kraidenko, “Production of zirconia dioxide using ammonium fluorides,” Polzunovskii Vestnik, No. 3, 126 – 160 (2017).

  18. Yu. A. Simonov, A. A. Kritskii, V. N. Rychkov, and V. A. Tomashov, “Investigation of the treatment process of associated dioxides of zirconium and silicon by an aqueous solution of ammonium fluoride,” Russian Journal of Non-Ferrous Metals, 51, 320 – 323 (2010). https://doi.org/10.3103/S1067821210040115.

    Article  Google Scholar 

  19. G. A. Farnasov and A. B. Lisafin, “Dissociation of zircon after treatment in high-frequency induction air plasma,” Fizika i Khimiya Obrabotki Materialov, No. 2, 29 – 34 (2015).

  20. Sh. M. Sharafeev and V. I. Vereshchagin, “Phase formation processes during low-temperature fluoridation of zirconium silicate,” Izv. Vuzov, Khimiya i Khim. Tekhnol., 64(4), 67 – 72 (2021). https://doi.org/10.6060/ivkkt.20216404.6336.

    Article  CAS  Google Scholar 

  21. G. D. Polenov, A. V. Zhukov, and S. V. Chyzhevskaya, “Kinetics of solid-phase interaction between zirconium tetrafluoride and mechanically activated quartz,” Uspekhi v Khimii i Khim. Tekhnol., 29(6), 85 – 87 (2015).

    Google Scholar 

  22. F. Q. Lin, W. S. Dong, C. L. Liu, and M. Y. Li, “The synthesis of NH4Zr2F9 and its conversion to ZrO2,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335, 1 – 7 (2009). https://doi.org/10.1016/j.colsurfa.2008.10.014.

    Article  CAS  Google Scholar 

  23. J. G. Yeo, S. C. Choi, J. W. Kim, et al., “Thermal reaction behavior of ZrSiO4 and CaCO3 mixtures for high-temperature refractory applications,” Materials Science and Engineering A, 368, 94 – 102 (2004). https://doi.org/10.1016/j.msea.2003.09.099.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. M. Sharafeev.

Additional information

Translated from Novye Ogneupory, No. 6, pp. 44 – 50, June, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafeev, S.M., Vereshchagin, V.I. Composite Zircon Ceramics Based on Raw Materials Activated by Ammonium Bifluoride. Refract Ind Ceram 62, 337–342 (2021). https://doi.org/10.1007/s11148-021-00604-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00604-6

Keywords

Navigation