Skip to main content
Log in

Evaluation of the Thermal Stability of Composite Powder Materials in a Plasma Jet

  • Published:
Refractories and Industrial Ceramics Aims and scope

The paper presents the results of studying thermal stability of materials operating in a plasma jet under high temperature and rapid thermal load variation conditions. It has been shown that the use of plasma generators along with the introduction of various powder materials make it possible to simulate the operating conditions of the parts exposed to high-temperature gas flows containing heated particles. The effect of the introduced powder materials on the thermal stability of samples prepared by plasma spraying from molybdenum, as well as tungsten and tungsten-based compositions was studied. An experimental setup was proposed for evaluating the thermal stability of the composites and protective hardening coatings operating under high-temperature gas flows, which also allows determining erosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Yu. Prokhorov, “Thermal stability of oxide-based ceramic materials,” Refract. Ind. Ceram., 43(5/6), 195 – 205 (2002).

    Article  CAS  Google Scholar 

  2. V. V. Kolomeitsev, S. A, Suvorov, E. F. Kolomeitseva, et al., “Thermal stability of high temperature materials. Part 2,” Refract. Ind. Ceram., 45(5), 364 – 372 (2004).

  3. S. A. Suvorov, A. V. Rusinov, and V. N. Fishchev, “Heat-resistant compositions of the aluminum titanate – zirconium titanate system,” Ogneupory i Tekhn. Keram., No. 10, 10 – 14 (2011).

  4. G. D. Apal’kova, On Thermal Stability of Materials Used in Modern Process Equipment [in Russian], Izd. Tsentr YuUrGU, Chelyabinsk (2016), pp. 465 – 471.

  5. D. A. Geodakyan, O. K. Geokchyan, A. K. Kostanyan, et al., “Multicomponent heat-resistant compositions,” Ogneupory i Tekhn. Keram., No. 7/8, 30 – 33 (2010).

  6. Yu. V. Smirnov, V. S. Loskutov, and A. F. Puzyakov, “Study of the thermal stability of materials in a plasma jet,” in: Theory and Practice of Applying Gas-Flame Sprayed Coatings [in Russian], MVTU im. N. E. Baumana, Moscow (1976), pp. 53 – 58.

  7. Ya. L. Grushevskii, Study of the Thermal Stability of Structural Refractory Materials Considering their Inelasticity [in Russian], Inst. Probl. Prochn., Kiev (1977).

  8. A. S. Losev, Ye. N. Yeremin, and G. P. Rumyantsev, “Study of the thermal resistance of a deposited martensite-ageing metal having a composite structure,” Omsk. Nauchn. Vestn., No. 2 (100), 94 – 96 (2011).

  9. A. A. Babinets, I. A. Ryabtsev, I. A. Kondratyev, et al., “Study of the thermal stability of deposited metal intended for restoration of the mill rolls,” Avtomat. Svarka, No. 5, 17 – 21 (2014).

  10. R. V. Alyakretskii, M. Yu. Karchebnyi, S. A. Zommer, et al., “Study of the effect of plasma spraying conditions on the coating thermal stability,” Reshetnevskiye Chteniya, 1, 6 – 7 (2015).

  11. V. A. Barvinok, V. I. Bogdanovich, I. A. Dokukina, et al., “Mathematical modeling of the powder composite heating in a plasma jet,” Izv. Samar. Nauchn. Tsentra RAN, 3(2), 197 – 203 (2001).

    Google Scholar 

  12. M. I. Dyumin, N. P. Kozlov, and V. I. Suslov, “Numerical simulation of the dynamics of powder material heating in a process micro-plasmatron,” Vestn. MVTU im. N. E. Baumana, Ser. Mashinostroyeniye, No. 3, 3 – 11 (2003).

  13. K. A. Korsunov, A. V. Chalenko, and R. N. Brozhko, “Simulation of heating the powder material particles in a plasma jet,” Vestn. SevGTU, Ser. Mashinopriborostr. i Transport, 118, 53 – 56 (2011).

    Google Scholar 

  14. A. V. Belov and N. G. Neumoina, “On the use of the generalized Pisarenko-Lebedev strength criterion in strength calculations during non-isothermal loading processes,” Mezhdunar. Zhurn. Prikl. Fund. Issled., No. 9 – 2, 8 – 10 (2014).

  15. M. Kh. Gadzhiev, A. S. Tyuftyaev, M. A. Sargsyan, et al., “Diagnostic complex for studying the plasma jet interaction with heat-resistant materials,” Vestn. Dagestan Gos. Univ., 31(1), 22 – 27 (2016).

    Google Scholar 

  16. A. A. Lebedev and G. S. Pisarenko, Aspects of High-Temperature Strength in Mechanical Engineering [in Russian], Izd. AN UkSSR, Kiev (1963).

  17. Aspects of Strength in Mechanical Engineering [in Russian], ed. by: D. A. Gokhfeld, ChPI, Chelyabinsk (1974).

  18. S. L. Zhukov, B. N. Vasiliev, I. A. Shadskii, et al., Fatigue Resistance and Thermal Stability of Heat-resistant Alloys and Steels [in Russian], ONTI, Moscow (1963).

  19. V. P. Buntushkin, Yu. Yu. Cherkis, V. V. Terekhova, et al., “Protective composite coatings for heat-resistant nickel alloys,” in: Theory and Practice of Applying Gas-Flame Sprayed Coatings [in Russian], MVTU im. N. E. Baumana, Moscow (1976), pp. 16 – 19.

  20. S. B. Maslennikov, Heat-resistant Steels and Alloys: reference book [in Russian], Metallurgiya, Moscow (1983).

  21. O. A. Bannykh and K. B. Povarova, Thermally-stable and Heat-resistant Metallic Materials: Physical and Chemical Principles of Creation [in Russian], Nauka, Moscow (1987).

  22. N. I. Artemenko, “Study of the operating conditions of METCOF4 serial plasmatron using plasma-generating argon and nitrogen gases,” Trudy VIAM, No. 5 (65), 76 – 89 (2018).

  23. M. Kh. Gadzhiev, E. Kh. Isakaev, A. S. Tyuftyaev, et al., “High-power generator of low-temperature air plasma with an expanding outlet electrode channel,” Pis’ma v Zhurn. Tekhn. Fiz., No. 2, 44 – 49 (2016).

  24. M. Kh. Gadzhiev, A. S. Tyuftyaev, E. Kh. Isakaev, et al., “Low-temperature air plasma generator for studying the interaction between plasma jet and heat-resistant materials,” Vestn. Dagestan Gos. Univ., Ser. 1. Estestv. Nauki, 33(1), 50 – 56 (2018).

    Google Scholar 

  25. K. K. Bakhrunov and B. D. Lygdenov, “Testing of coatings for thermal stability,” Fund. Probl. Sovr. Materialoved., 12(2), 175 – 178 (2015).

    Google Scholar 

  26. A. A. Ulanovskii, B. L. Shmyrev, and Yu. N. Altukhov, “Universal tungsten-rhenium thermal transducers in high-temperature thermometry,” Pribory, No. 5 (71), 4 – 13 (2006).

  27. M. M. Pushkarev, “Popular contact technologies of thermometry,” Komponenty i Tekhnologii, No. 1 (54), 140 – 146 (2006).

  28. V. V. Blokhin and Ye. A. Sharonov, “Strength and thermal stability of molybdenum plasma coatings,” Vol. 2, Part 1, in: Theory and Practice of Applying Gas-Flame Sprayed Coatings [in Russian], MVTU im. N. E. Baumana, Moscow (1989), pp. 147 – 153.

  29. V. Ye. Panin, Ye. F. Dudarev, V. Ye. Ovcharenko, et al., “Increase in thermal stability of nickel-based composite materials reinforced by tungsten and molybdenum fibers by directional alloying of a matrix,” in: Structure and Properties of Heat-resistant Metallic Materials [in Russian], Inst. Metallurg. im. A. A. Baikova (1973), pp. 103 – 111.

  30. V. S. Shaidurov, P. Ye. Andreev, S. F. Lunin, et al., “On the effectiveness of using gas-phase tungsten fluoride in selected fields of technology,” Vol. 3, in: Theory and Practice of Applying Gas-Flame Sprayed Coatings [in Russian], MVTU im. N. E. Baumana, Moscow (1989), pp. 112 – 117.

  31. Yu. V. Smirnov, V. V. Gubchenko, V. Ya. Petrov, et al., “Effect of temperature activation of zirconia powder on the coating density and adhesion strength,” Vol. 2, in: Theory and Practice of Applying Gas-Flame Sprayed Coatings [in Russian], MVTU im. N. E. Baumana, Moscow (1985), pp. 133 – 134.

  32. O. G. Devoino and V. V. Okovityi, “Zirconia-based thermally protective plasma coatings with increased heat resistance,” Nauka i Tekhnika, No. 1, 35 – 39 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Additional information

Translated from Novye Ogneupory, No. 6, pp. 39 – 43, June, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, I.N., Kuznetsov, Y.A., Galinovskii, A.L. et al. Evaluation of the Thermal Stability of Composite Powder Materials in a Plasma Jet. Refract Ind Ceram 62, 332–336 (2021). https://doi.org/10.1007/s11148-021-00603-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00603-7

Keywords

Navigation