Skip to main content
Log in

Effect of SiC Dispersed Composition on Physical and Mechanical Properties of Reaction-Sintered Silicon Carbide

  • Published:
Refractories and Industrial Ceramics Aims and scope

Dense ceramic materials of silicon carbide with high mechanical properties are obtained by reaction sintering. The effect of different dispersed compositions of silicon carbide powders on the microstructure, grain size after sintering, and physical and mechanical properties is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. G. G. Gnesin, Oxygen-free Ceramic Materials [in Russian], Tekhnika, Kiev, 1987, 152 pp.

    Google Scholar 

  2. G. G. Gnesin, Silicon-Carbide Materials [in Russian], Metallurgiya, Moscow, 1977, 216 pp.

    Google Scholar 

  3. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Engineering Ceramics [in Russian], Nauchtekhlitizdat, Moscow, 2003, 384 pp.

    Google Scholar 

  4. A. P. Garshin and S. G. Chulkin, Reaction-Sintered Silicon-Carbide Structural Materials. Physicomechanical and Tribotechnical Properties [in Russian], Izd. Politekh. Univ., St. Petersburg, 2006, 84 pp.

    Google Scholar 

  5. V. P. Paranosenkov, A. A. Chikina, and M. A. Andreev, “Structural materials based on self-bonded silicon carbide,” Ogneupory Tekh. Keram., No. 7, 37 – 40 (2006).

    Google Scholar 

  6. V. P. Paranosenkov, A. A. Chikina, and I. L. Shkarupa, “Selfbinding silicon carbide of OTM-923 grade,” Ogneupory Tekh. Keram., No. 2, 23 – 25 (2004).

    Google Scholar 

  7. A. P. Garshin, “Structure and properties of structural wear-resistant materials based on silicon carbide prepared by reactive sintering,” Doctoral Dissertation in Technical Sciences, St. Petersburg, 2000, 267 pp.

    Google Scholar 

  8. O. P. Chakrabarti, P. K. Das, and J. Mukerji, “Influence of free silicon content on the microhardness of RBSiC,” Ceram. Forum Int., 74(2), 98 – 101 (1997).

    CAS  Google Scholar 

  9. R. M. Fedoruk, V. V. Primachenko, L. K. Savina, et al., “Study of the effect of graphite additives and specific surface area of silicon on the thermal conductivity and other properties of reaction- bound silicon-carbide items,” Sb. Nauchn. Tr., Ukr. NIIO, 104, 31 – 36 (2004).

  10. H. W. Kim, H. E. Kim, H. Song, and J. Ha, “Effect of oxidation on the room-temperature flexural strength of reaction-bonded silicon carbides,” J. Am. Ceram. Soc., 82(6), 1601 – 1604 (1999).

    CAS  Google Scholar 

  11. Q.-W. Huang and L.-H. Zhu, “High-temperature strength and toughness behaviors for reaction-bonded SiC ceramics below 1400°C,” Mater. Lett., 59(14/15), 1732 – 1735 (2005).

    CAS  Google Scholar 

  12. Zh. Lu, L. Ziong, J. Gao, and Zh. Jin, “Microstructure, porosity and resistivity in reaction-bonded silicon carbide,” Xi’an Jiaotong Daxue Xuebao, 33(4), 48 – 51 (1999).

  13. P. Sangsuwan, J. A. Orejas, J. E. Gatica, et al., “Reactionbonded silicon carbide by reactive infiltration,” Ind. Eng. Chem. Res., 40(23), 5191 – 5198 (2001).

    CAS  Google Scholar 

  14. Y.-X. Wang, Sh.-H. Tan, and D.-L. Jiang, “The fabrication of reaction- formed silicon carbide with controlled microstructure by infiltrating a pure carbon preform with molten Si,” Ceram. Int., 30(3), 435 – 439 (2004).

    CAS  Google Scholar 

  15. E. Scafe, G. Giunta, L. Fabbri, et al., “Mechanical behavior of silicon-silicon carbide composites,” J. Eur. Ceram. Soc., 16(7), 703 – 713 (1996).

    CAS  Google Scholar 

  16. L. N. D’yachkova, E. V. Zvonarev, V. M. Shelekhina, and M. A. Isupov, “On reaction-sintering production of silicon carbide materials,” Inzh. Fiz. Zh., 70(2), 260 – 263 (1997).

    Google Scholar 

  17. V. P. Paranosenkov, A. A. Chikina, and M. A. Andreev, “Structural materials based on self-bonded silicon carbide,” Ogneupory Tekh. Keram., No. 7, 37 – 40 (2006).

    Google Scholar 

  18. V. P. Paranosenkov, A. A. Chikina, and I. L. Shkarupa, “Selfbinding silicon carbide of OTM-923 grade,” Ogneupory Tekh. Keram., No. 2, 23 – 25 (2004).

    Google Scholar 

  19. A. P. Garshin and S. G. Chulkin, Reaction-Sintered Silicon-Carbide Structural Materials. Physicomechanical and Tribotechnical Properties [in Russian], Izd. Politekh. Univ., St. Petersburg, 2006, 84 pp.

    Google Scholar 

  20. A. P. Garshin and Yu. N. Vil’k, “Effect of some technological parameters on structure formation in materials based on reaction- sintered silicon carbide,” Ogneupory Tekh. Keram., No. 8, 2 – 8 (1996).

    Google Scholar 

  21. Yu. N. Vil’k and A. P. Garshin, “Some properties of materials based on self-bound silicon carbide and the possibilities of their use,” Ogneupory Tekh. Keram., No. 7, 11 – 14 (1996).

    Google Scholar 

  22. S. N. Perevislov, “Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials,” Refract. Ind. Ceram., 60(3), 168 – 173 (2019); Nov. Ogneupory, No. 3, 49 – 54 (2019).

  23. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Production of ceramic materials based on SiC with low-melting oxide additives,” Glass Ceram., 75(9/10), 400 – 407 (2019).

    CAS  Google Scholar 

  24. M. G. Frolova, A. V. Leonov, Y. F. Kargin, et al., “Molding features of silicon carbide products by the method of hot slip casting,” Inorg. Mater.: Appl. Res., 9(4), 675 – 678 (2018).

    Google Scholar 

  25. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 220 – 225 (2017).

    CAS  Google Scholar 

  26. A. S. Lysenkov, K. A. Kim, D. D. Titov, et al., “Composite material Si3N4/SiC with calcium aluminate additive,” J. Phys: Conf. Ser., 1134(1), 012036 (2018).

    Google Scholar 

  27. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Materials based on boron carbide obtained by reaction sintering,” IOP Conf. Ser.: Mater. Sci. Eng., 525(1), 012074 (2019).

    CAS  Google Scholar 

  28. M. A. Markov, S. S. Ordan’yan, S. V. Vikhman, et al., “Preparation of MoSi2–SiC–ZrB2 structural ceramics by free sintering,” Refract. Ind. Ceram., 60(4), 385 – 388 (2019); Nov. Ogneupory, No. 8, 34 – 37 (2019).

  29. S. S. Ordan’yan, V. I. Rumyantsev, D. D. Nesmelov, and D. V. Korablev, “Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation,” Refract. Ind. Ceram., 53(2), 108 – 111 (2012).

    Google Scholar 

  30. S. S. Ordan’yan, D. D. Nesmelov, D. P. Danilovich, and Y. P. Udalov, “Revisiting the structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them,” Russ. J. Non-Ferrous Met., 58(5), 545 – 551 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bykova.

Additional information

Translated from Novye Ogneupory, No. 4, pp. 41 – 45, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Markov, M.A., Krasikov, A.V. et al. Effect of SiC Dispersed Composition on Physical and Mechanical Properties of Reaction-Sintered Silicon Carbide. Refract Ind Ceram 61, 211–215 (2020). https://doi.org/10.1007/s11148-020-00458-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00458-4

Keywords

Navigation