Skip to main content
Log in

Experimental and Numerical Study of the Formation of Thermophysical Characteristics of Carbon Composite Materials. Part 1. Formation of the thermophysical Characteristics of a Carbon Composite Material

  • HEAT ENGINEERING
  • Published:
Refractories and Industrial Ceramics Aims and scope

The analysis of a heat transfer mechanism in the bulk of carbon-carbon composite materials was performed. It was experimentally determined that a homogeneous thermal condition is established at a depth of up to twenty structural cells of the composite. A characteristic layered porosity structure of the material formed by crack-like pores was revealed, and the extent of reduction in thermal conductivity upon splitting the samples into parts was determined. It was found that the process of cooling of the hot reinforcement rod in the carbon substance of the composite is less dependent on the effective thermal conductivity in the direction transversal to a bundle of parallel fibers in a 1D-reinforcement rod, and more dependent on the contact thermal resistance along the boundaries of the crack-like pores filled with air having a thermal conductivity of about 0.3 W/(m·K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Ch. Pradere, Thermal and Thermomechanical Characterization of Carbon and Ceramic Fibers at Very High Temperature, Ecole Natiionale Superiered’Artset Metiers Centre de Bordeaux (2004), https://pastel.archives-ouvertes.fr/file/index/docid/500111/filename/ThesePradere.pdf.

  2. C. W. Ohlhorst, W. L. Vauhn, P. O. Ransone, and H.-T. Tsou, Thermal Conductivity Database of Various Structural Carbon-carbon Composite Materials, Hampton, Virginia, LangleyResearch Center (1997), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.682&rep=rep1&type=pdf.

  3. M. Grujicic, C. L. Zhao, E. C. Dusel, et al., “Computational analysis of the thermal conductivity of the carbon–carbon composite materials,” J. Mater. Sci., 41(24), 8244 – 8256 (2006), https://link.springer.com/article/10.1007/s10853-006-1003-x.

    Article  CAS  Google Scholar 

  4. S. A. Kolesnikov, M. Yu. Bamborin, V. A. Vorontsov, et al., “Formation of carbon-carbon composite material thermal conductivity standards,” Refract. Ind. Ceram., 58(1), 94 – 102 (2017).

    Article  CAS  Google Scholar 

  5. S. A. Kolesnikov, L. V. Kim, V. A. Vorontsov, et al., “Study of thermophysical property formation of spatially reinforced carbon-carbon composite materials,” Refract. Ind. Ceram.,58(4), 439 – 449 (2017).

    Article  CAS  Google Scholar 

  6. D. E. Glass, Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles, 15th AIAA Space Planes and Hypersonic Syst. and Technol. Conf. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080017096.pdf.

  7. Patent RU2651344, A. N. Goryaev, V. V. Nazarenko, A. V. Matrosov, V. V. Gorskii, Ye. N. Vatolina, S. V. Tashchilov, and A. N. Timofeev, Tip of a hypersonic aircraft, Application No. 2016149536, appl. date: December 16, 2016, publ. date: April 19, 2018, Bul. No. 11. http://www.findpatent.ru/patent/265/2651344.html.

  8. S. A. Kolesnikov and A. K. Protsenko, Carbon-carbon composites: development, research and application in high-temperature equipment, Proc. Int. Conf. “Current status and potential for development of electrode products, structural and composite carbon materials”, Chelyabinsk, Nov. 25 – 26 (2010), pp. 259 – 271.

  9. N. Mullenix and A. Povitsky, Parallel tightly coupled solver for unsteady hypersonic ablation of graphite, AIAA 2010 – 4451 40th Fluid Dynamics Conference and Exhibit, Chicago, June28 – July 1 (2010), http://www.enu.kz/repository/2010/AIAA-2010-4451.pdf.

  10. Z.-H. Feng, J.-Y. Zhi, Z. Fan, et al., “Analytical model of thermal conductivity for carbon/carbon composites with pitch-based matrix,” Adv. Mech. Eng., 7(1) (2015), Article ID 242586. DOI: 10.1155.-2014/242586. https://www.researchgate.net/ publication/275513278_An_Analytical_Model_of_Thermal_Conductivity_for_CarbonCarbon_Composites_with_Pitch-Based_Matrix.

  11. A. L. Medvedskii, Yu. V. Korneev, and A. S. Kurbatov, “Study of physical and mechanical properties of 4D-carbon composite material at macro- and micro-levels under exposure to high temperatures, Trudy MAI (Electronic journal), No. 41 (2015), www.mai.ru/science/trudy/.

  12. Sh. Minapoor, S. Ajeli, and M. Javadi Toghchi, “Simulation of non-crimp 3D orthogonal carbon fabric composite for aerospace applications using finite element method,” Int. J. Aerosp.Mech. Eng., 9(6), 982 – 990 (2015). https://waset.org/publications/10001564/simulation-of-non-crimp-3d-orthogonal-carbonfabric-composite-for-aerospaceapplications-using-finite-element-method.

  13. Multi-dimensionally reinforced carbon-carbon composites. http://niigrafit.ru/produktsiya/kompozity.php.

  14. L. M. Manocha, “High performance carbon-carbon composites.” Sadhana, 28, parts 1/2, 349 – 358 (2003). http:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.8031&rep=rep1&type=pdf.

  15. A. K. Protsenko and S. A. Kolesnikov, Development of carbon-carbon technologies and their development potential, In:“55 years of the Research Institute of Graphite-based Structural Materials”, Nauchnye Tekhnologii, Moscow (2015), http://www.niigrafit.ru/nauka-i-obrazovanie/sbornik.pdf.

    Google Scholar 

  16. Patent RU2498962. G. A. Krechka, V. D. Kleymenov, and V. N. Savelyev, Reinforcing frame made of carbon-carbon composite material, Application No. 2011127880/02, appl. date: July 06, 2011, publ. date: Nov. 20, 2013, Bul. No. 32. http://www.findpatent.ru/patent/249/2498962.html.

  17. I. A. Izhenbin, Tomographic system based on “Orel” tomograph for performing tomographic scanning of the samples of 39p7.001 and 4KMC-L type carbon-carbon composite materials, Electronic Scientific Archive of the Tomsk Polytechnic University (2016), http://earchive.tpu.ru/bitstream/11683/28151/1/TPU174557.pdf.

  18. RAPIR, Kelvin, and LandRT8A type radiation pyrometers, http://echome.ru/radiacionnyj-pirometr.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kolesnikov.

Additional information

Translated from Novye Ogneupory, No. 7, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, S.A., Kim, L.V. & Dudin, V.R. Experimental and Numerical Study of the Formation of Thermophysical Characteristics of Carbon Composite Materials. Part 1. Formation of the thermophysical Characteristics of a Carbon Composite Material. Refract Ind Ceram 60, 327–335 (2019). https://doi.org/10.1007/s11148-019-00362-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00362-6

Keywords

Navigation