Skip to main content
Log in

Acidic Methods of Alumina Production (Review)

  • RAW MATERIALS
  • Published:
Refractories and Industrial Ceramics Aims and scope

Requirements for special-purpose alumina for the ceramic, electronic and refractory industries are considered. Analysis and comparison of acidic methods for preparing alumina from the point of view of efficiency, adaptability and production safety are provided. The risks of alumina acidic production methods are estimated. The advantage of the sulfuric acid method versions is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. A. S. Ivanova, “Aluminum oxide: application, preparation methods, structure, and acid-basic properties,” Prom. Katal. Lektsiyakh, No. 8, 7 – 61 (2009).

  2. N. M. Gavrilova, T. I. Kruglaya, M. A. Myachina, et al., “Structured carriers based on α-Al2O3 for membrane catalysts,” Steklo. Keram., No. 1, 29035 (2018).

  3. H. Hiaofu, L. Yunqi, and L. Chenguang, “Facile synthesis of ammonium aluminum carbonate hydroxide multilayered nano-fiber by using solid state reaction,” Adv. Mater. Res., 415417, 580 – 584 (2012).

  4. G. Byukhel’, I. Shtinnessen, A. Bur, et al., “E-SY-1000 and E-SY-2000 – new reactive aluminas for improving refractory concrete adaptability,” Novye Ogneupory., No. 4, 142 – 148 (2006).

  5. V. A. Doroganov, E. A. Doroganov, N. A. Peretokina, et al., “Modifying additives and loose-density ceramic composites for different purposes using artificial ceramic binders,” Proc. regional sci.-tech. conf. for results of rough fundamental research on interdisciplinary themes conducted by the Russian fund for fundamental research and Belgorod Region Government (2016).

  6. E. N. Korchuganova, “Study of leaching of water-soluble impurities from commercial aluminum hydroxide,” Vestn. Vostoch. Nats. Univ. im. Vladimira Dalya, No. 9(216) 16 – 18 (2014).

  7. I. S. Kainarskii, É. V. Degtyareva, and I. G. Orlova, Corundum Refractories and Ceramics [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  8. V. I. Vereshchagin, P. M. Pletnev, A. P. Surzhikov, et al., (editor V. I. Vereshchagin), Functional Ceramics [in Russian], INKH SO RAN, Novosibirsk (2004).

  9. D. N. Poluboyarinov, V. L. Balkevich, and I. Ya. Popil’skii, High-Alumina Ceramic and Refractory Materials [in Russian], Gos. Izd. Lit. po Stroit. Arkh. Stroit. Mater., Moscow (1960).

    Google Scholar 

  10. Yu. A. Polonskii, E. R. Skue, V. I. Mogilenskii, et al., “Obtaining high-purity fused refractory oxides,” Refractories, 14(7/8), 422 – 424 (1973).

    Article  Google Scholar 

  11. V. I. Aleksandrov, V. V. Osiko, and V. M. Tamarintsev, “Melting of refractory dielectric materials by high-temperature heating,” Pribor. Tekhn. Éksper., No. 5, 222 – 225 (1970).

  12. V. M. Byndin, V. I. Dobrovol’skaya, and D. G. Ratnikov, Induction Heating During Production of Especially Pure materials [in Russian], Mashin., Moscow 9180).

  13. V. I. Aleksandrov, V. V. Osiko, A. M. Prokhorov, and V. M. Tamarintsev, “Preparation of high-temperature materials by direct high-frequency melting in a cold container,” Uspekhi Khim. AN SSSR,47(3), 385 – 427 (1978).

    CAS  Google Scholar 

  14. N. E. Pozin, Mineral Salt Technology [in Russian], Khimiya, Moscow 91970).

  15. A. A. Khanamirova, “Effect of preparation conditions for aluminum hydroxide and oxide in ceramic sintering and properties,” Khim. Zh. Armenii, No. 4(60), 664 – 676 (2007).

  16. W. Long, Z. Ting’an, L. Guozhi, et al., “Characterization of activated alumina production via spray pyrolysis,” Light Metals. The Minerals, Metals & Materials Series, 93 – 99 (2017).

  17. V. M. Sizyakov, E. V. Tikhonova, and M. V. Cherkasova, “Efficiency of oxide compounds of magnesium in purification of alumina industry solutions from organic impurities,” Non-Ferrous Ìetals, No. 2, 23 – 26 (2013).

  18. E. Yu. Sudarikova, “Preparation of precursors and synthesis of high-purity aluminum oxide powders from them,” Author’s Abstr. Diss. Cand. Techn. Sci., 05.17.01, State Sic.-Res. Inst. of Chemical Reagents and Specially Pure chemical Substances, Moscow (2009).

  19. D. G. Shabalin, “Structural transformations of aluminum hydroxide during hydrothermal, thermal, and heat treatment,» Author’s Abstr. Diss. Cand. Techn. Chem. Sci., 02.00.01, N. S. Kunakov Inst. of General and Inorganic Chemistry,, RAN, Moscow (2008).

  20. G. P. Panasyuk, L. A. Aza, V. N. Belan, et al., “Methods for preparing aluminum oxide with a high degree of purity for growing leucosapphire crystals (Review),” Khim. Tekhnol., No. 9, 393 – 400 (2017).

  21. A. I. Lainer, N. I. Eremin, Yu. A. Lainer, and I. Z. Pevzner, Alumina Production [in Russian], Metallurgiya, Moscow (1978).

  22. V. I. Moskvitin, I. V. Nikolaev, and B. A. Fomin, Nonferrous Metal Metallurgy [in Russian], Intermet. Inzhiniring, Moscow (2005).

    Google Scholar 

  23. A. P. Lysenko, E. S. Kondrat’eva, and S. Yu. Shilovskii, “Electrochemical technology for preparing aluminum hydroxide including cleaning iron from aluminum chloride solution,” Tsvet. Met., No. 5, 41 – 44 (2018).

  24. V. M. Brichkin, V. M. Sizyakov, I. S. Oblova, and D. V. Fedoseev, “Industrial synthesis of finely dispersed aluminum hydroxide during process aluminum-containing raw material,” Tsvet. Met., No. 10, 45 – 51 (2018).

  25. V. A. Matveev and D. V. Maiorov, “Preparation of aluminum oxide with low impurity content based on processing aluminum- ammonium alums separated from nepheline,” Tsvet. Met., No. 11, 45 – 50 (2018).

  26. V. S. Rimkevich, A. A. Lushkin, and O. V. Churushova, “Comprehensive treatment of power station coal ash,” Gorn. Inform.- Analit. Byull., No. 6 250 – 259 (2015).

  27. G. Chzhokhua, V. Tsun’di, Ch. Isin’, Kh. Tszyan’go, Ch. Tszunchzhou, S. Yan’bin’, and Ch. Isin’, RF Patent 2510365 MPK C 01 F 7/02, B 09 B 3/00. Method for preparing metallurgical alumina using light ashes formed in a fluidized bed, Patent holder China Shanhua Energy Co. Ltd., CPR, Claim 04.27.11; Publ. 03.27.14, Bull. No. 9.

  28. V. G. Balmaev, S. S. Kirov, V. I. Pak, and M. A. Ivanov, “Kinetics of high-temperature hydrochloric acid leaching of kaolin clays of the Eastern Siberian deposits under laboratory and enlarged conditions,” Tsvet. Met., No. 3, 38 – 45 (2018).

  29. T. S. Yusupov and V. G. Shumskaya, “New concept of producing aluminum and its compounds from non-traditional aluminum silicate raw material,” Fiz. Tekhn. Probl., Razrab. Polez. Iskop., No. 2, 96 – 101 (2009).

  30. V. V. Korobochkin, Yu. B. Shvalev, V. I. Kosintsev, and L. D. Bystritskii, “Study of continuous aluminum hydroxide gel technology,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 43(3), 82086 (2000).

    Google Scholar 

  31. V. V. Narkovich, F. G. Isupov, and V. V. Alferov, “Development of ammonia corpuscular aluminum hydroxide production,” Coll. Items in vaccine-blood matter (V. V. Narkovich, editor), Meditsina, Moscow (1975).

  32. A. G. Aptikasheva, “Formation of porous structures in aluminum hydroxide under conditions of sulfate-aluminate precipitationmethod,” Diss. Cand. Chem. Sci., 02.00.01, Kazan’ (2005).

  33. N. I. Shapiro, L. S. Safonova, M. I. Dubkina, and K. V. Machul’skaya, “Comparative study of aluminum hydroxide gel preparation,” Zh. Mikrobiol. Epidem. Immun., No. 9, 26 – 31 (1970).

  34. S. A. Sinuta and I, V, Davydov, RF Patent 2355638, MPK C 01 F 7/34. Method for preparing very fine aluminum hydroxide, Patent holder OAO Rusal, Claim 12.27.07; Publ. 05.20.09, Bull. No. 14.

  35. E. V. Stepanova, D. E. Shvarygin, and Yu. B. Shvalev, “Effect of precipitation condition on physicochemical properties of aluminum hydroxide gel,” Izv. Tom. Politekh. Univ., Tekhn. Nauki, 307(1), 99 – 101 (2004).

    Google Scholar 

  36. N. S. Stas’, “Dependence of aluminum hydroxide properties on its preparation method,” Sovremen. Probl. Nauki Obraz., No. 3, 121 – 128 (2012).

  37. P. G. Kudryavtsev, “Homogeneous precipitation of hydrated oxide and its use for preparing composite materials,” Inzh. Vestn. Don., No. 3, 2018. Access regime: ivdon.ru/ru/magazine/archive/n3y2018/5046.

  38. K. A. Poteshkina, “Development and study of gel forming composition for improving oil seam recovery,” Diss. Cand. Techn. Sci., 02.00.01. Moscow (2016)

  39. M. E. Pozin, Mineral salt technology, Part 1 [in Russian], Khimiya, Leningrad (1974).

    Google Scholar 

  40. D. V. Valiev, “Physicochemical bases of preparing alumina and mixed coagulants from boehmite, kaolin, bauxites by hydrochloric acid autoclave leaching,” Diss. Cand. Techn. Sci., 05.16.02, Moscow (2016).

  41. D. V. Valiev, “Kinetics of iron removal from boehmite kaolinite bauxites with hydrochloric acid,” 14th. All. Russia Annual Conf. of Young Scientists, Scientific Workers, and Aspirants, Physical chemistry and technology of organic material (with internat. participants), Moscow, 17 – 20 Oct. (2017).

  42. Yu. A. Lainer, Comprehensive Treatment of Aluminum-Containing Raw Material by Acid Methods [in Russian], Nauka, Moscow 91982).

  43. V. V. Vaitner, “Study of nitric acid treatment of aluminum silicates for preparation of aluminum oxide,” Diss. Cand. Techn. Sci., Ekaterinberg (2004).

    Google Scholar 

  44. I. I. kalinichenko. V. V. Vaitner, V. G. Berezyuk, S. D. Vashchenko, V.. G. Antaniadi, S. A. Tomilov, and V. F. Matveev RF Patent 2202516. Method for preparing aluminum oxide, No. 22025161; Claim 04.29.02, Publ. 04.20.03, Bull. No. 11.

  45. V. A. Matveev, V. I. Zakharov, and D. V. Maiorov, “Prospects of nitric acid method for processing nepheline to alumina,” Svet. Met., No. 11, 72 – 74 (2011).

  46. O. D. Onukwuli, O. Ukwuoma, P. Igbokwe, and L. E. Aneke, “Production of activated clay for bleaching of red palm oil,” Discovery and Innovation,8(4), 333 – 338 (1996).

    Google Scholar 

  47. R. O. Ajemba and O. D. Onukwuli, “Dissolution kinetics and mechanisms of reaction of Udi clay in nitric acid solution,” American Journal of Scientific and Industrial Research, 3(3), 115 – 121 (2012).

    Article  Google Scholar 

  48. A. A. Andreev and A. N. D’yachenko, “Fluorine-ammonia technology for processing mineral raw material,” Fluorine Technology, Proc. Conf., TGPU, Tomsk (2009).

    Google Scholar 

  49. V. S. Rimkevich, Yu.M. Malovitskii, S. A. Bogidaev, et al., “Effective technology for treating non-bauxite ores,” Izv. Vuz. Tsvet. Met., No. 2, 34 – 40 (2008).

  50. V. S. Rimkevich, A. A. Pushkin, and I. V. Girenko, “Prospects of comprehensive treatment of thermal power station high-silica technogenic waste,” Izv. Samar. Nauk. Tsentr, Ross. Akad. Nauk., 17(5), 304 – 309 (2015).

    Google Scholar 

  51. A. N. D’yachenko and R. I. Kraidenko, “Separation of silicon- iron copper nickel concentrate by a fluoro-ammonium method into individual oxides,” Zv. Tomsk. Politekh. Univ., 311(3), 38 – 41 (2007).

    Google Scholar 

  52. B. P. Nikol’skii, et al., Chemical Handbook, 3rd. ed. [in Russian], Khimiya, Leningrad (1971).

  53. E. I. Mel’nichenko, D. G. Épov, G. F. Krysenko, et al., “Processes of silica removal during treatment and enrichment of mineral raw material with ammonium hydrofluoride,” Zh. Prikl. Khim., 69(8), 1248 – 1251 (1996).

    Google Scholar 

  54. E. I. Mel’nichenko, G. F. Krysenko, and M. N. Mel’nichenko, “Evaporation of (NH4)2SiF6 in the presence of SiO2,” Zh. Neorg. Khim., 51(12), 33 – 37 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Kashcheev.

Additional information

Translated from Novye Ogneupory, No. 6, pp. 3 – 9, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashcheev, I.D., Zemlyanoi, K.G. & Stepanova, K.O. Acidic Methods of Alumina Production (Review). Refract Ind Ceram 60, 237–242 (2019). https://doi.org/10.1007/s11148-019-00343-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00343-9

Keywords

Navigation