Skip to main content
Log in

Effect of Hercynite Spinel on the Technological Properties of MCZ Products Used for Lining Cement Rotary Kilns

  • Published:
Refractories and Industrial Ceramics Aims and scope

Magnesia-calcium zirconate (MCZ) composite products have been tested in the transition zones of cement kilns. Such products are of interest because they are environmentally safe and demonstrate high resistance when exposed to cement clinker at elevated temperatures. Such modifiers as hercynite spinel FeO·Al2O3 (FA) can be added in small quantities to MCZ products to enhance elasticity, improve their ability to form a protective coating on the lining surface, and create a reinforced structure. In this study, various FA amounts (2, 4, and 6 wt.%) were added to the MCZ-clinker made from magnesite and ZrO2 (9.8 wt.%). Next, the material densification parameters, cold compressive strength (CCS), severity of exposure to cement clinker components (CCC), and other technical characteristics of the products made from this material were studied. The maximum product strength was obtained upon introduction of 2 wt.% of FA additive, however, further increase in FA quantity was prevented by an excessive number of micro-cracks and glass-phase formation. The penetration depth of the cement clinker components into the MCZ-FA products decreased with an increase in the FA additive content. In other words, the penetration depth was lower at higher FA quantities. In addition, the behavior of the protective coating and thermal shock resistance of the products improved considerably upon increasing the FA content to 6 wt.%. The products with different FA content can be used for lining the cement rotary kiln zones, in which different protective coating formation conditions are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Refractory bricks Suppliers, Manufacturers. (n.d.). http://www.weiku.com/suppliers/refractory-bricks.html (accessed July 13, 2018).

  2. J. I. Bhatty, Innovations in Portland cement manufacturing, PCA, Skokie (2011).

    Google Scholar 

  3. D. Wang, Y. Li, Y. Li, R. Li, and Y. Li, “Optimizing performance of magnesia-spinel brick used at cement rotary kiln,” Adv. Mater. Res., 250 – 253, 588 – 594 (2011).

    Article  CAS  Google Scholar 

  4. C. A. Schacht, Refractories handbook, CRC Press, Estados Unidos (2004).

    Book  Google Scholar 

  5. J. Contreras, G. Castillo, E. Rodríguez, T. Das, and A. Guzmán, “Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures,” Mater. Charact., 54 (2005).

    Article  CAS  Google Scholar 

  6. S. Otroj, “Synthesis of hercynite under air atmosphere using MgAl2O4 spinel,” Mater. Sci., 21 (2015).

  7. G. Buchebner, T. Molinaria, and H. Harmuth, “Magnesia-hercynite bricks, an innovative burnt basic refractory,” Proceedings of the Unified Int. Tech. Conf. on Refractories, UNITECR, 99, 201 – 311 (1999).

  8. K. C. Chung and D. H. L. Ng, “Fabrication of magnetic iron–hercynite composites by reaction sintering,” Key Eng. Mater., 334/335, 309 – 312 (2007).

    Article  CAS  Google Scholar 

  9. G. Liu, N. Li, W. Yan, C. Gao, W. Zhou, and Y. Li, “Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln,” Ceram. Int., 40, 8149 – 8155 (2014).

    Article  CAS  Google Scholar 

  10. G. Gelbmann, R. Krischanitz, and S. Jorg, “Hybrid spinel technology provides performance advances for basic cement rotary kiln bricks,” RHI Bulletin, 2, 10 – 12 (2013).

    Google Scholar 

  11. G. X. Yin, Y. Li, J. H. Chen, and B. Pan, “High performance iron-rich magnesia-spinel composite for burning zone of cement rotary kiln,” Adv. Mater. Res., 476 – 478, 1915 – 1919 (2012).

  12. J. Szczerba, “Calcium zirconate as the secondary phase of magnesia refractories for cement rotary kiln,” Advances in Science and Technology, 70, 15 – 20 (2010).

    Article  CAS  Google Scholar 

  13. P. M. Botta, E. F. Aglietti, J. M. P. López, “Mechanochemical synthesis of hercynite,” Mater. Chem. Phys., 76, 104 – 109 (2002).

    Article  CAS  Google Scholar 

  14. G. Liu, N. Li, W. Yan, C. Gao, W. Zhou, and Y. Li, “Composition and structure of a composite spinel made from magnesia and hercynite,” Journal of Ceramic Processing Research, 13, 480 – 485 (2012).

    Google Scholar 

  15. B. Lavina, F. Princivalle, and A. Della, “Controlled time-temperature oxidation reaction in a synthetic Mg-hercynite,” Phys. Chem. Miner, 32, 2, 83 – 88 (2005).

    Article  CAS  Google Scholar 

  16. A. Álvaro Obregón, J. L. Rodríguez-Galicia, et al., “MgO–CaZrO3-based refractories for cement kilns,” J. Eur. Ceram. Soc., 31, 61 – 74 (2011).

    Article  Google Scholar 

  17. S. Serena, M. Sainz, S. Deaza, and A. Caballero, “Thermodynamic assessment of the system ZrO2-CaO-MgO using new experimental results. Calculation of the isoplethal section MgO–CaO–ZrO2,” J. Eur. Ceram. Soc., 25, 681 – 693 (2005).

    CAS  Google Scholar 

  18. N. Ross and T. Chaplin, “Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites,” J. Solid State Chem., 172, 123 – 126 (2003).

    Article  CAS  Google Scholar 

  19. L. Li, J. Yu, Y. Liu, N. Zhang, and J. Chen, “Synthesis and characterization of high performance CaZrO3-doped X8R BaTiO3- based dielectric ceramics,” Ceram. Int., 41, 8696 – 8701 (2015).

    Article  CAS  Google Scholar 

  20. E. V. Galuskin, V. M. Gazeev, T. Armbruster, et al., “Lakargiite CaZrO3: A new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia,” American Mineralogist, 93, 1903 – 1910 (2008).

    Article  CAS  Google Scholar 

  21. R. E. Jaeger and R. E. Nickell, “Thermal shock resistant zirconia nozzles for continuous copper casting,” Ceramics in Severe Environments, 163 – 184 (1971).

  22. H. Kozuka, Y. Kajita, Y. Tuchiya, T. Honda, and S. Ohta, “Further improvements of MgO–CaO–ZrO2 refractory bricks,” In: UNITECR (1995).

  23. J. Contreras, G. Castillo, E. Rodríguez, et al., “Microstructure and properties of hercynite–magnesia–calcium zirconate refractory mixtures,” Mater. Charact., 54, 354 – 359 (2005).

    Article  CAS  Google Scholar 

  24. E. Rodríguez, G.-A. Castillo, J. Contreras, et al., “Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO–CaZrO3 refractory brick for the cement industry,” Ceram. Int., 38, 6769 – 6775 (2012).

    Article  Google Scholar 

  25. E. Rodríguez, A. Limones, J. Contreras, et al., “Effect of hercynite spinel content on the properties of magnesia-calcium zirconate dense refractory composite,” J. Eur. Ceram. Soc., 35, 2631 – 2639 (2015).

    Article  Google Scholar 

  26. E. M. Ewais, I. M. Bayoumi, and S. A. El-Korashy, “M-CZ composites from Egyptian magnesite as a clinker to RCK refractory lining,” Ceram. Int., 44, 2274 – 2282 (2018).

    Article  CAS  Google Scholar 

  27. E. C. A. A. Rodríguez, G.-A. Castillo, T. K. Das, et al., “MgAl2O4 spinel as an effective ceramic bonding in a MgO–CaZrO3 refractory,” J. Eur. Ceram. Soc., 33, 2767 – 2774 (2013).

    Article  Google Scholar 

  28. E. M. Ewais and I. M. Bayoumi, “Fabrication of MgO–CaZrO3 refractory composites from Egyptian dolomite as a clinker to cement rotary kiln lining,” Ceram. Int., 44, 9236 – 9246 (2018).

    Article  CAS  Google Scholar 

  29. E. M. Ewais and I. M. Bayoumi, “Magnesium aluminate spinel nanoparticle influences upon the technological properties of MCZ composite brick for RCK lining,” Ceram. Int., 44, 14734 – 14741 (2018).

    Article  CAS  Google Scholar 

  30. F. M. Lea, The chemistry of cement and concrete: 3rd ed., Chemical Publishing Company, New York (1971).

  31. J. L. Rodríguez-Galicia, A. H. De Aza, J. C. Rendón-Angeles, and P. Pena, “The mechanism of corrosion of MgO/CaZrO3-calcium silicate materials by cement clinker,” J. Eur. Ceram. Soc., 27, 79 – 89 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad M. M. Ewais.

Additional information

Translated from Novye Ogneupory, No. 4, April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewais, E.M.M., Bayoumi, I.M.I. Effect of Hercynite Spinel on the Technological Properties of MCZ Products Used for Lining Cement Rotary Kilns. Refract Ind Ceram 60, 192–200 (2019). https://doi.org/10.1007/s11148-019-00334-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00334-w

Keywords

Navigation