Skip to main content
Log in

Carbon Nanotubes for the Synthesis of Ceramic Matrix Composites (Cleaning, Dispersion, Surface Modification) (Review)

  • Published:
Refractories and Industrial Ceramics Aims and scope

In light of the continuing decrease in the cost of carbon nanotubes (CNT) and the promising properties of ceramic matrix composites (CMC) reinforced with CNTs, their wide application in industry is on the agenda. For this, inexpensive technologies for the production of CNTs are necessary. Technological stages of the industrial production of complex-shaped products from carbon nanotube-reinforced ceramic matrix composites (CNT-CMC) are reviewed: the cleaning of raw materials after their production, the dispersion of aggregates and some methods for modifying their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Bakunov, “Analysing the structure of ceramics” [in Russian], Neorganicheskie Materialy, 32(2), 243 – 248 (1996). V. S. Bakunov, “Analysing the structure of ceramics,” Inorg. Mater., 32, No. 2, 220 – 222 (1996).

  2. N. Yuca, N. Karatepe, F. Yakuphanoglu, et al., “Thermal and electrical properties of carbon nanotubes purified by acid digestion,” International Scholarly and Scientific Research & Innovation, 5(7), 484 – 489 (2011).

    Google Scholar 

  3. R. C. Haddon, J. Sippel, A. G. Rinzler, et. al., “Purification and separation of carbon nanotubes,” MRS Bulletin, 29(4), 252 – 259 (2004).

  4. J. Park, S. Banerjee, T. Hemraj, et al., “Purification strategies and purity visualization techniques for single-walled carbon nanotubes,” J. Mater. Chem., 16(2), 141 – 154 (2006).

    Article  CAS  Google Scholar 

  5. P. X. Hou, C. Liu, and H. M. Cheng, “Purification of carbon nanotubes” Carbon, 46(15), 2003 – 2025 (2008).

    Article  CAS  Google Scholar 

  6. Y. Zeng, C. Zheng, X. Hou, et al., “Photochemical vapor generation for removing nickel impurities from carbon nanotubes and its real-time monitoring by atomic fluorescence spectrometry,” Microchem. J., 117(11), 83 – 88 (2014).

    Article  CAS  Google Scholar 

  7. H. Qiu, Y. Maeda, T. Akasaka, et al., “Diameter-selective purification of carbon nanotubes by microwave-assisted acid processing,” Sep. Purif. Technol., 96, 182 – 186 (2012).

    Article  CAS  Google Scholar 

  8. U. Pełech, A. Narkiewicz, A. Kaczmarek, et al., “Removal of metal particles from carbon nanotubes using conventional and microwave methods,” Sep. Purif. Technol., 136, 105 – 110 (2014).

    Article  CAS  Google Scholar 

  9. N. Saifuddin, A. Z. Raziah, and A. R. Junizah, “Carbon nanotubes: a review on structure and their interaction with proteins. Hindawi Publishing Corporation,” J. Chem., Article ID 676815, P. 18 (2013).

  10. A. Dillon, T. Gennett, K. M. Jones, et al., “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater., 11, 1354 – 1356 (1999).

    Article  CAS  Google Scholar 

  11. E. Borowiak-Palen, T. Pichler, X. Liu, et al., “Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation,” Chem. Phys. Lett., 363(5/6), 567 – 572 (2002).

    Article  CAS  Google Scholar 

  12. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, “Complete elimination of metal catalysts from single wall carbon nanotubes,” Carbon, 40(7), 985 – 988 (2002).

    Article  CAS  Google Scholar 

  13. I. W. Chiang, B. E. Brinson, A. Y. Huang, et al., “Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process),” J. Phys. Chem. B, 105(35), 8297 – 8301 (2001).

    Article  CAS  Google Scholar 

  14. I. W. Chiang, B. E. Brinson, R. E. Smalley, et al., “Purification and characterization of single-wall carbon nanotubes,” J. Phys. Chem. B, 105(6), 1157 – 1161 (2001).

    Article  CAS  Google Scholar 

  15. A. R. Harutyunyan, B. K. Pradhan, J. Chang, et al., “Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles,” J. Phys. Chem. B, 106(34), 8671 – 8675 (2002).

    Article  CAS  Google Scholar 

  16. E. Farkas, M. E. Anderson, Z. Chen, et al., “Length sorting cut single wall carbon nanotubes by high performance liquid chromatography,” Chem. Phys. Lett., 363(1/2), 111 – 116 (2002).

    Article  CAS  Google Scholar 

  17. J. M. Moon, K. H. An, Y. H. Lee, et al., “High-yield purification process of single-walled carbon nanotubes,” J. Phys. Chem. B, 105(24), 5677 – 5681 (2001).

    Article  CAS  Google Scholar 

  18. S. Huang and L. Dai, “Plasma etching for purification and controlled opening of aligned carbon nano-tubes,” J. Phys. Chem. B, 106(14), 3543 – 3545 (2002).

    Article  CAS  Google Scholar 

  19. P. H. Xiang, C. Liu, Y. Tong, et al., “Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method,” J. Mater. Res., 16(9), 2526 – 2529 (2001).

    Article  Google Scholar 

  20. H. Kajiura, S. Tsutsui, H. Huang, et al., “High-quality single-walled nanotubes from arc-produced soot,” Chem. Phys. Lett., 364(5/6), 586 – 592 (2002).

    Article  CAS  Google Scholar 

  21. G. Hajime, F. Terumi, F. Yoshiya, et al., “Method of purifying single wall carbon nanotubes from metal catalyst impurities,” Honda Giken Kogyo Kabushiki Kaisha, Minato-ku, Japan (2002).

  22. H. Hu, B. Zhao, M. E. Itkis, et al., “Nitric acid purification of single-walled carbon nanotubes,” J. Phys. Chem. B, 107(50), 13838 – 13842 (2003).

    Article  CAS  Google Scholar 

  23. T. Jeong, W. Y. Kim, and Y. B. Hahn, “A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas,” Chem. Phys. Lett., 344(1/2), 18 – 22 (2001).

    Article  CAS  Google Scholar 

  24. H. T. Fang, C. G. Liu, C. Liu, et al., “Purification of single-wall carbon nanotubes by electrochemical oxidation,” Chem. Mater., 16(26), 5744 – 5750 (2004).

    Article  CAS  Google Scholar 

  25. E. Unger, A. Graham, F. Kreupl, et al., “Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification,” Curr. Appl. Physics., 2(1), 107 – 111 (2002).

    Article  Google Scholar 

  26. D. Nepal, D. S. Kim, and K. E. Geckeler, “A facile and rapid purification method for single-walled carbon nanotubes,” Carbon, 43(3), 660 – 662 (2005).

    Article  CAS  Google Scholar 

  27. H. Jia, Y. Lian, M. O. Ishitsuka, et al., “Centrifugal purification of chemically modified single-walled carbon nanotubes,” Sci. Technol. Adv. Mater., 6, 571 – 581 (2005).

    Article  CAS  Google Scholar 

  28. H. Yu, Y. Qu, Z. Dong, et al., “Separation of mixed SWNTs and MWNTs by centrifugal force an experimental study,” In: Proc. 7th IEEE Int. Conf. on Nanotechnology (IEEE-NANO 07), August 2007, p. 1212 – 1216.

  29. J. Y. Li and Y. F. Zhang, “A simple purification for single-walled carbon nanotubes,” Physica E, 28(3), 309 – 312 (2005).

    Article  CAS  Google Scholar 

  30. H. Houjin, S. Masashi, Y. Atsuo, et al., “Sony Corporation Japan,” JP107130245812 35-20020613 WO P 7-12 (2001).

  31. S. Bandow, A. M. Rao, K. A. Williams, et al., “Purification of single-wall carbon nanotubes by microfiltration,” J. Phys. Chem. B, 101(44), 8839 – 8842 (1997).

    Article  CAS  Google Scholar 

  32. K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, et al., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration,” Chem. Phys. Lett., 282(5/6), 429 – 434 (1998).

    Article  CAS  Google Scholar 

  33. G. Korneva, H. H. Ye, Y. Gogotsi, et al., “Carbon nanotubes loaded with magnetic particles,” Nano Lett., 5(5), 879 – 884 (2005).

    Article  CAS  Google Scholar 

  34. J. G. Wiltshire, L. J. Li, A. N. Khlobystov, et al., “Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution,” Carbon, 43(6), 1151 – 1155 (2005).

    Article  CAS  Google Scholar 

  35. L. Thien-Nga, K. Hernadi, E. Ljubivic, et al., “Mechanical purification of single-walled carbon nanotube bundles from catalytic particles,” Nano Lett., 2(12), 1349 – 1352 (2002).

    Article  CAS  Google Scholar 

  36. M. T. Martínez, M. A. Callejas, A. M. Benito, et al., “Microwave single walled carbon nanotubes purification,” Chem. Commun., No. 9, 1000 – 1001 (2002).

  37. E. V. Vázquez, V. Georgakilas, and M. Prato, “Microwave-assisted purification of HIPCO carbon nanotubes,” Chem. Commun., No. 20, 2308 – 2309 (2002).

  38. J. Ma and J. N. Wang, “Purification of single-walled carbon nanotubes by a highly efficient and non-destructive approach,” Chem. Mater., 20(9), 2895 – 2902 (2008).

    Article  CAS  Google Scholar 

  39. V. Pifferi, G. Cappelletti, C. Di Bari, et al., “Multi-walled carbon nanotubes (MWYHT) modified electrodes: functionalization on the electroanalytical performances,” Electrochim. Acta., 146(10), 403 – 410 (2014).

    Article  CAS  Google Scholar 

  40. T. Bortolamiol, P. Lukanov, A.-M. Galibert, et al., “Double-walled carbon nanotubes: quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening,” Carbon, 78(11), 79 – 90 (2014).

    Article  CAS  Google Scholar 

  41. J. F. Colomer, P. Piedigrosso, I. Willems, et al., “Purification of catalytically produced multi-wall nanotubes,” Chem. Soc., Faraday Trans., 94, 3753 – 3758 (1998).

    Article  CAS  Google Scholar 

  42. T. Suzuki, S. Inoue, and Y. Ando, “Purification of single-wall carbon nanotubes by using high-pressure micro reactor,” Diamond Relat. Mater., 17(7 – 10), 1596 – 1599 (2008).

    Article  CAS  Google Scholar 

  43. P. Chungchamroenkit, S. Chavadej, U. Yanatatsaneejit, et al., “Residue catalyst support removal and purification of carbon nano-tubes by NaOH leaching and froth flotation,” Sep. Purif. Technol., 60(2), 206 – 214 (2008).

    Article  CAS  Google Scholar 

  44. E. Raymundo-Piñero, T. Cacciaguerra, P. Simon, et al., “A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes,” Chem. Phys. Lett., 412, 184 – 189 (2005).

    Article  CAS  Google Scholar 

  45. S. Delpeux, K. Szostak, E. Frackowiak, et al., “High yield carbon nanotubes from the catalytic decomposition of acetylene on in-situ formed Co nanoparticles,” J. Nanosci. Nanotec., 2, 481 – 484 (2002).

    Article  CAS  Google Scholar 

  46. E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, et al., “KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization,” Carbon, 43(4), 786 – 795 (2005).

    Article  CAS  Google Scholar 

  47. J. Barkauskas, I. Stankevičienë, and A. Selskis, “A novel purification method of carbon nanotubes by high-temperature treatment with tetrachloromethane,” Sep. Purif. Technol., 71(3), 331 – 336 (2010).

    Article  CAS  Google Scholar 

  48. S. G. King, L. McCafferty, V. Stolojan, et al., “Highly aligned arrays of super resilient carbon nanotubes by steam purification,” Carbon, 84(3), 130 – 137 (2015).

    Article  CAS  Google Scholar 

  49. Y. Y. Bu, K. Hou, and D. Engstrom, “Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process,” Diamond Relat. Mater., 20(5/6), 746 – 751 (2011).

    Article  CAS  Google Scholar 

  50. X. Ling, Y. Wei, L. Zou, et al., “The effect of different order of purification treatments on the purity of multi-walled carbon nanotubes,” Appl. Surf. Sci., 276(1), 159 – 166 (2013).

    Article  CAS  Google Scholar 

  51. F. Ikazaki, S. Ohshima, K. Uchida, et al., “Chemical purification of carbon nanotubes by use of graphite-intercalation compounds,” Carbon, 32(8), 1539 – 1542 (1994).

    Article  CAS  Google Scholar 

  52. Y. J. Chen, M. L. H. Green, J. L. Griffin, et al., “Purification and opening of carbon nanotubes via bromination,” Adv. Mater., 8(12), 1012 – 1015 (1996).

    Article  CAS  Google Scholar 

  53. P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev., 49(1), 31 – 43 (2004).

    Article  CAS  Google Scholar 

  54. Y. Y. Huang and E. M. Terentjev, “Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties,” Polymers, 4(1), 275 – 295 (2012).

    Article  CAS  Google Scholar 

  55. T. Premkuma, R. Mezzenga, and K. E. Geckeler, “Nanotube dispersion: carbon nanotubes in the liquid phase: addressing the issue of dispersion,” Small, 8, 1299 – 1313 (2012).

    Article  CAS  Google Scholar 

  56. R. Andrews, D. Jacques, M. Minot, et al., “Fabrication of carbon multi-wall nanotube/polymer composites by shear mixing,” Macromol. Mater. Eng., 287, 395 – 403 (2002).

    Article  CAS  Google Scholar 

  57. J. H. Park, P. S. Alegaonkar, S. Y. Jeon, et al., “Carbon nanotube composite: Dispersion routes and field emission parameters,” Compos. Sci. Technol., 68, 753 – 759 (2008).

    Article  CAS  Google Scholar 

  58. M. H. G. Wichmann, J. Sumeth, B. Fiedler, et al., “Multi-wall carbon nanotube/epoxy composites produced with a master-batch process,” Mech. Comp. Mater., 42, 395 – 406 (2006).

    Article  CAS  Google Scholar 

  59. Y. Y. Huang and E. M. Terentjev, “Dispersion and rheology of carbon nanotubes in polymers,” Int. J. Mater. Form., 1, 63 – 74 (2008).

    Article  Google Scholar 

  60. Y. Y. Huang, T. P. J. Knowles, and E. M. Terentjev, “Strength of nanotubes, filaments, and nanowires from sonication-induced scission,” Adv. Mater., 21, 3945 – 3948 (2009).

    Article  CAS  Google Scholar 

  61. Y. Yamamoto, Y. Miyauchi, J. Motoyanagi, et al., “Improved bath sonication method for dispersion of individual single-walled carbon nanotubes using new triphenylene-based surfactant,” Jpn. J. Appl. Phys., 47, 2000 – 2004 (2008).

    Article  CAS  Google Scholar 

  62. R. Ramasubramaniama and J. Chen, “Homogeneous carbon nanotube/polymer composites for electrical applications,” Appl. Phys. Lett., 83, 2928 – 2930 (2003).

    Article  CAS  Google Scholar 

  63. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, XVIII, Cambridge University Press, Cambridge and New York (1989) 525 p.

  64. Z. Sun, V. Nicolosi, D. Rickard, et al., “Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential,” J. Phys. Chem. C, 112, 10692 – 10699 (2008).

    Article  CAS  Google Scholar 

  65. J. M. Bonard, T. Stora, J. P. Salvetat, et al., “Purification and size-selection of carbon nanotubes,” Adv. Mater., 9, 827 – 831 (1997).

    Article  CAS  Google Scholar 

  66. M. F. Islam, E. Rojas, E. M. Bergey, et al., “High weight fraction surfactant solubilization of single-wall carbon nano-tubes in water,” Nano Lett., 3, 269 – 273 (2003).

    Article  CAS  Google Scholar 

  67. S. Li and D. Daniel Blankschtein, “Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: A molecular dynamics simulation study,” J. Phys. Chem., 114, 15616 – 15625 (2010).

    Article  CAS  Google Scholar 

  68. Z. Liu, S. M. Tabakman, Z. Chen, et. al., “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc., 4, 1372 – 1381 (2009).

  69. Y. Wu, J. A. S. Hudson, Q. Lu, et al., “Coating single-walled carbon nanotubes with phospholipids,” J. Phys. Chem. B, 110, 2475 – 2478 (2006).

    Article  CAS  Google Scholar 

  70. R. Rastogia, R. Kaushala, S. K. Tripathib, et al., “Comparative study of carbon nanotube dispersion using surfactants,” J. Colloid Interface Sci., 328, 421 – 428 (2008).

    Article  CAS  Google Scholar 

  71. M. Zheng, A. Jagota, E. Semke, et al., “DNA-assisted dispersion and separation of carbon nanotubes,” Nat. Mater., 2, 338 – 342 (2003).

    Article  CAS  Google Scholar 

  72. X. Tu, S. Manohar, A. Jagota, et al., “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, 460, 250 – 253 (2009).

    Article  CAS  Google Scholar 

  73. S. S. Karajanagi, H. Yang, P. Asuri, et al., “Protein-assisted solubilization of single-walled carbon nanotubes,” Langmuir, 22, 1392 – 1395 (2006).

    Article  CAS  Google Scholar 

  74. M. J. O’Connell, P. B. Boul, L. M. Ericson, et al., “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,” Chem. Phys. Lett., 342, 265 – 271 (2001).

    Article  Google Scholar 

  75. T. Hasan, V. Scardaci, P. H. Tan, et al., “Stabilization and ‘debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP),” J. Phys. Chem. C, 111, 12594 – 12602 (2007).

    Article  CAS  Google Scholar 

  76. J. H. Zou, L.W. Liu, H. Chen, et al., “Dispersion of pristine carbon nanotubes using conjugated block copolymers,” Adv. Mater., 20, 2055 – 2060 (2008).

    Article  CAS  Google Scholar 

  77. E. Christian, G. M. A. Rahman, N. Jux, et al., “Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids,” J. Am. Chem. Soc., 128, 11222 – 11231 (2006).

    Article  CAS  Google Scholar 

  78. N. Nakashima, Y. Tomonari, and H. Murakami, “Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion,” Chem. Lett., 31, 638 – 639 (2002).

    Article  Google Scholar 

  79. Y. Ji, Y. Y. Huang, A. R. Tajbakhsh, et al., “Polysiloxane surfactants for the dispersion of carbon nanotubes in non-polar organic solvents,” Langmuir, 25, 12325 – 12331 (2009).

    Article  CAS  Google Scholar 

  80. J. Chen, H. Liu, W. A. Weimer, et al., “Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers,” J. Am. Chem. Soc., 124, 9034 – 9035 (2002).

    Article  CAS  Google Scholar 

  81. C. Bala´zsi, B. Fe´nyi, N. Hegman, et al., “Development of CNT/Si with improved mechanical and electrical properties,” Composites. Part B: Engineering, 37, 418 – 424 (2006).

    Article  CAS  Google Scholar 

  82. F. Inam, H. Yan, D. D. Jayaseelan, et al., “Electrically conductive alumina – carbon nanocomposites prepared by spark plasma sintering,” J. Eur. Ceram. Soc., 30, 153 – 157 (2010).

    Article  CAS  Google Scholar 

  83. Y. Y. Huang, T. P. J. Knowles, and E. M. Terentjev, “Strength of nanotubes, filaments, and nanowires from sonication-induced scission,” Adv. Mater., 21, 3945 – 3948 (2009).

    Article  CAS  Google Scholar 

  84. Y. Y. Huang and E. M. Terentjev, “Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties,” Polymers, 4, 275 – 295 (2012).

    Article  CAS  Google Scholar 

  85. S. Cui, R. Caneta, A. Derrea, et al., “Characterization of multiwall carbon nanotubes and influence of surfactant in the processing,” Carbon, 41, 797 – 809 (2003).

    Article  CAS  Google Scholar 

  86. Q. Zhang, S. Rastogi, D. Chen, et al., “Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique,” Carbon, 44, 778 – 785 (2006).

    Article  CAS  Google Scholar 

  87. A. Hirsch and O. Vostrowsky, “Functionalization of carbon nanotubes,” Top. Curr. Chem., 245, 193 – 237 (2005).

    Article  CAS  Google Scholar 

  88. B. Ruelle, C. Bittencourt, and P. Dubois, “Surface treatment of carbon nanotubes using plasma technology,” 474 – 505, In” R. Banerjee and I. Manna, Ceramic Nanocomposites, Woodhead, Oxford, Philadelphia, New Delhi (2013) 596 p.

  89. A. Hirsch, “Functionalization of single-walled carbon nanotubes,” Angew. Chem. Int. Ed., 41, 1853 – 1859 (2002).

    Article  CAS  Google Scholar 

  90. P. Liu, “Modifications of carbon nanotubes with polymers,” Eur. Polym. J., 41, 2693 – 2703 (2005).

    Article  CAS  Google Scholar 

  91. D. Bonduel, M. Mainil, M. Alexandre, et. al., “Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites,” Chem. Commun., 781 – 783 (2005).

  92. E. Thostenson, C. Li, and T.W. Chou, “Nanocomposites in context,” Compos. Sci. Technol., 65, 491 – 516 (2005).

    Article  CAS  Google Scholar 

  93. K. Fu, W. Huang, Y. Lin, et al., “Defunctionalization of functionalized carbon nanotubes,” Nano Lett., 1(8), 439 – 441 (2001).

    Article  CAS  Google Scholar 

Download references

The work was performed in accordance with the Federal Target Program, Contract No. 26.02-IP-1/2017, to develop technology for obtaining new functional ceramic matrix composites with improved electrophysical and thermomechanical properties for the defense, electronic and aerospace industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belyakov.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 30 – 39, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.V. Carbon Nanotubes for the Synthesis of Ceramic Matrix Composites (Cleaning, Dispersion, Surface Modification) (Review). Refract Ind Ceram 60, 92–100 (2019). https://doi.org/10.1007/s11148-019-00315-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00315-z

Keywords

Navigation