Skip to main content
Log in

Titanium-Alumina Slag – Semifunctional Technogenic Resource of High-Alumina Composition. Part 2. Use of Ferrotitanium Slag for Producing Refractories in Metallurgy and Other Branches of Industry1

  • RAW MATERIALS
  • Published:
Refractories and Industrial Ceramics Aims and scope

Scientific research work performed using titanium-alumina slag starting from the 1940s is reviewed. It is shown that use of titanium-alumina slag as a sintering additive makes it possible to improve the functional properties of various refractories, magnesite (periclase) powder, and some forms of refractory concrete. The slag serves as a secondary raw material or for TiO2 preparation, and is also used successfully in manufacturing acid-resistant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Performed by L. P. Sudakova.

References

  1. A. S. Berezhnoi, “Physical chemistry f spinelids and their use in refractory material technology,” in: Work Devoted to P. P. Budnikov 60 th Anniversary [in Russian], Izd. MISM, Moscow (1946).

  2. E. V. Ivanov, “Technology of high density magnesia objects (with addition of FeTiO3),” Sbor. Nauch. Trudov VNIIO, No. 1 (XVIII), 191 – 205 (1955).

  3. F. Z. Dolkart, “Use of titanium-alumina slag for preparing refractories,” Ogneupory, No. 7, 300 – 305 (1957).

  4. V. A. Bron G. S. Deisperova, and G. S. Krotova, “Effect of additives, dispersion, and firing temperature on sintering caustic dust,” Ogneupory, No. 5, 221 – 226 (1964).

  5. V. A. Perepelitsyn, G. V. Dolgykh, and K. V. Simonov, “Study of the substance composition of caustic magnesite dust,” Ogneupory, No. 9, 4754 (1970).

  6. V. A. Bron, A. A. Bichurina, V. A. Perepelitsyn, et al., “Testing dinas with addition of titanium-alumina slag in the lower structure of an open-heath furnace,” Ogneupory, No. 4, 27 – 29 (1967).

  7. A. A. Bichurina, V. A. Bron, I. T. Gubko, M. I. Kostomarov, K. I. Safonova, I. D. Sizov, and E. V. Khitro, USSR Inventor’ Cert. 146229. Method for improving dinas raw material thermal stability. No. 692365 / 29, Claim 01.05.62, Bull. No. 7 (1962).

  8. B. Ya. Pines, Physical and Physicochemical Processes During Refractory Wear in Steel-Teeming Units [in Russian], ONTI, Moscow (1935).

    Google Scholar 

  9. I. P. Bas’yas and A. I. Chernogolov, Open-Hearth Furnace Regenerators [in Russian], Metallurgizdat, Moscow (1961).

    Google Scholar 

  10. D. S. Belyankin, B. V. Ivanov, and V. V. Panin, Engineering Stone Petrography [in Russian], Izd. Akad. Nauk SSSR, Moscow 91952).

  11. A. S. Frenkel’ and O. M. Margulis, “Refractory wear in openhearth furnace regenerator units,” Stal’, No. 2, 124 – 135 (1950).

  12. P. S. Mamykin, Refractory Objects [in Russian]. Metallurgizdat, Moscow (1955).

    Google Scholar 

  13. V. A. Dolmatov, “Fundamental research of deposit formation enriched in titanium on a blast furnace hearth,” Novosti Chern. Met. za Rubezh., No. 2, 30 – 34 (2002).

  14. V. A. Gostenin, S. K. Sibagatullin, A. L. Mavrov, et al., “Structure of carbonitride skull formed in hearth and shoulders,” Stal’, No. 2, 29 – 30 (2007).

  15. V. V. Filippov, V. S. Rudin, A. Chernavin, et al., “Study of granule formation during Kachakanar GOK titanium-magnetite melting conditions,” Stal.,, No. 5, 15 – 18 (2000).

  16. V. A. Perepelitsyn, V. G. Grigor’ev, V. M. Rytvin, and V. G. Grigor’ev, “Ferroalloy aluminothermal slag materials science,” Innovation in Materials Science and Metallurgy, Proc. 1st. Internat. Sci. Tech. Conf., Part. 1, Ekaterinburg (2012).

  17. V. A. Perepelitsyn, V. M. Rytvin, V. A. Korotaev, et al., Ural Technogenic Resources [in Russian], RIO UrO RAN, Ekaterinburg, (2013).

  18. I. G. Ochagova, “Properties of concrete with added Al2O3–MgO–TiO2-raw material for CBCM tundishes,” Novosti Chern. Met. za Rubezh., No 3, 89 – 91 (2008).

  19. I. D. Kashcheev (editor), Refractories for Industrial Units and Boilers: Handbook in 2 Books, Book 1 [in Russian], Intermet Inzhiniring, Moscow (2000).

  20. L. I. Leont’ev, S. K. Nosov, A. A. Karpov, et al., “New solutions in processing complex ferrous metallurgy resources,” Stal‘, No. 11, 19021 (2003).

  21. E. S. Abdrakhimova, V. K. Semenychev, and V. Z. Abdrahimov, RF Patent 2430063, Ceramic mix for preparing acid-resistant materials, No. 2009100477/03, Claim. 01.11.09, Publ. 04.127.10, Bull. No. 32.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Perepelitsyn.

Additional information

1Conclusion. Part 1 published in Novye Ogneupory, No. 3 (2017).

Translated from Novye Ogneupory, No. 9, pp. 16 – 27, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rytvin, V.M., Perepelitsyn, V.A., Ponomarenko, A.A. et al. Titanium-Alumina Slag – Semifunctional Technogenic Resource of High-Alumina Composition. Part 2. Use of Ferrotitanium Slag for Producing Refractories in Metallurgy and Other Branches of Industry1. Refract Ind Ceram 58, 487–498 (2018). https://doi.org/10.1007/s11148-018-0132-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-018-0132-5

Keywords

Navigation