Skip to main content
Log in

Green synthesis of ZnO-doped cerium oxide nanocomposite using clove extract: enhanced photocatalytic methylene blue degradation and antibacterial properties

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, we present a green synthesis method for producing ZnO-doped CeO2 nanocomposites (ZnO–CeO2 NC) and CeO2 nanoparticles (NPs) using clove (Syzygium aromaticum) extract. Our main objective is to assess their properties, focusing on their photocatalytic and antibacterial activities. Through comprehensive characterization techniques such as powder XRD, UV–vis DRS, and FTIR analyses, we thoroughly evaluated the synthesized materials. Notably, both the green-synthesized CeO2 (CLV30) NPs and ZnO–CeO2 (CZn) NCs demonstrated exceptional efficiency, degrading methylene blue dye by 89% and 94%, respectively, under visible light irradiation. The CZn nanocomposites exhibited remarkable reusability and stability over four cycles. Additionally, significant antibacterial activity was observed, with CLV30 exhibiting moderate effectiveness against Gram-negative Escherichia coli (E. coli) (8 mm) and Gram-positive Staphylococcus aureus (S. aureus) (11 mm) compared to CZn, which displayed notable inhibitory zones of 24 mm and 35 mm against E. coli and S. aureus, respectively. These findings highlight the versatile applications of these nanomaterials across various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

This article provides data that supports the findings of this study, including supplemental materials. If needed, the corresponding author can provide other relevant data.

References

  1. Gharagozlou M, Bayati R (2015) Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12. Mater Res Bull 61:340–347. https://doi.org/10.1016/j.materresbull.2014.10.043

    Article  CAS  Google Scholar 

  2. Li X, He F, Wang Z, Xing B (2022) Roadmap of environmental health research on emerging contaminants: inspiration from the studies on engineered nanomaterials. Eco-Environ Health 1:181–197. https://doi.org/10.1016/j.eehl.2022.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ayodhya D, Ambala A, Balraj G et al (2022) Green synthesis of CeO2 NPs using Manilkara zapota fruit peel extract for photocatalytic treatment of pollutants, antimicrobial, and antidiabetic activities. Results Chem 4:100441. https://doi.org/10.1016/j.rechem.2022.100441

    Article  CAS  Google Scholar 

  4. Vinutha SA, Meghashree AM, Gurudutt DM et al (2023) Facile green synthesis of cerium oxide nanoparticles using Jacaranda mimosifolia leaf extract and evaluation of their antibacterial and photodegradation activity. Mater Today Proc 89:105–112. https://doi.org/10.1016/j.matpr.2023.05.592

    Article  CAS  Google Scholar 

  5. Garg N, Garg A, Mukherji S (2020) Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. J Environ Manag 263:110383. https://doi.org/10.1016/j.jenvman.2020.110383

    Article  CAS  Google Scholar 

  6. Noman E, Al-Gheethi A, Talip BA et al (2021) Decolourization of dye wastewater by A Malaysian isolate of Aspergillus iizukae 605EAN strain: a biokinetic, mechanism and microstructure study. Int J Environ Anal Chem 101:1592–1615. https://doi.org/10.1080/03067319.2019.1686146

    Article  CAS  Google Scholar 

  7. Lebron YAR, Moreira VR, Santos LVS (2019) Studies on dye biosorption enhancement by chemically modified Fucus vesiculosus, Spirulina maxima and Chlorella pyrenoidosa algae. J Clean Prod 240:118197. https://doi.org/10.1016/j.jclepro.2019.118197

    Article  CAS  Google Scholar 

  8. Ledakowicz S, Paździor K (2021) Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules 26:870. https://doi.org/10.3390/molecules26040870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gunasekaran R, Kanmani S (2014) Performance of gas chlorination in decolourization of textile dyeing wastewater: a pilot study. Clean Technol Environ Policy 16:601–607. https://doi.org/10.1007/s10098-013-0656-9

    Article  CAS  Google Scholar 

  10. Liu Y, Xu D, Wang P, Dong Y (2016) Removal of sodium salts and chemical oxygen demand from real reactive dye wastewater by the integrated process of chemical precipitation and extraction. Desalin Water Treat 57:6772–6780. https://doi.org/10.1080/19443994.2015.1010232

    Article  CAS  Google Scholar 

  11. Joseph J, Radhakrishnan RC, Johnson JK et al (2020) Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater Chem Phys 242:122488. https://doi.org/10.1016/j.matchemphys.2019.122488

    Article  CAS  Google Scholar 

  12. Bernaoui CR, Bendraoua A, Zaoui F et al (2022) Synthesis and characterization of NiFe2O4 nanoparticles as reusable magnetic nanocatalyst for organic dyes catalytic reduction: study of the counter anion effect. Mater Chem Phys 292:126793. https://doi.org/10.1016/j.matchemphys.2022.126793

    Article  CAS  Google Scholar 

  13. Goual NEH, Alaoui C, Bendraoua A et al (2023) Petroleum sludge ash-derived MCM-41-silver nanocomposites for enhanced photocatalysis and antimicrobial effect in water treatment. New J Chem 47:20900–20909. https://doi.org/10.1039/D3NJ03613H

    Article  CAS  Google Scholar 

  14. Chakib A, Bekka A, Mohamed K et al (2022) Sol-gel synthesis of TiO2/WO3 and TiO2/WO3-graphene nanoparticles, investigation of their photocatalytic proprieties. Chemistry. https://doi.org/10.26434/chemrxiv-2022-khqgj

    Article  Google Scholar 

  15. Draoua Z, Harrane A, Adjdir M (2021) Preparation, characterization and application of the nanocomposite PCL-PEG-PCL/bentonite for the removal of methylene blue (MB) dye. Res Chem Intermed 47:4635–4655. https://doi.org/10.1007/s11164-021-04549-w

    Article  CAS  Google Scholar 

  16. Dong Q, Chen Z, Zhao B et al (2022) In situ fabrication of niobium pentoxide/graphitic carbon nitride type-II heterojunctions for enhanced photocatalytic hydrogen evolution reaction. J Colloid Interface Sci 608:1951–1959. https://doi.org/10.1016/j.jcis.2021.10.161

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Prabhu D, Arulvasu C, Babu G et al (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48:317–324. https://doi.org/10.1016/j.procbio.2012.12.013

    Article  CAS  Google Scholar 

  18. Hebbalalu D, Lalley J, Nadagouda MN, Varma RS (2013) Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem Eng 1:703–712. https://doi.org/10.1021/sc4000362

    Article  CAS  Google Scholar 

  19. Skorodumova NV, Simak SI, Lundqvist BI et al (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89:166601. https://doi.org/10.1103/PhysRevLett.89.166601

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Elahi B, Mirzaee M, Darroudi M et al (2019) Bio-based synthesis of Nano-Ceria and evaluation of its bio-distribution and biological properties. Colloids Surf B 181:830–836. https://doi.org/10.1016/j.colsurfb.2019.06.045

    Article  CAS  Google Scholar 

  21. Naidi SN, Khan F, Tan AL et al (2021) Green synthesis of CeO2 and Zr/Sn-dual doped CeO2 nanoparticles with photoantioxidant and antibiofilm activities. Biomater Sci 9:4854–4869. https://doi.org/10.1039/D1BM00298H

    Article  CAS  PubMed  Google Scholar 

  22. Sreekanth TVM, Dillip GR, Lee YR (2016) Picrasma quassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance. Ceram Int 42:6610–6618. https://doi.org/10.1016/j.ceramint.2015.12.171

    Article  CAS  Google Scholar 

  23. Malleshappa J, Nagabhushana H, Sharma SC et al (2015) Leucas aspera mediated multifunctional CeO2 nanoparticles: structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim A 149:452–462. https://doi.org/10.1016/j.saa.2015.04.073

    Article  CAS  Google Scholar 

  24. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411. https://doi.org/10.1039/c0nr00875c

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Goubin F, Rocquefelte X, Whangbo M-H et al (2004) Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) ions. Chem Mater 16:662–669. https://doi.org/10.1021/cm034618u

    Article  CAS  Google Scholar 

  26. Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B 95:73–77. https://doi.org/10.1016/S0925-4005(03)00407-6

    Article  CAS  Google Scholar 

  27. Yao S-Y, Xie Z-H (2007) Deagglomeration treatment in the synthesis of doped-ceria nanoparticles via coprecipitation route. J Mater Process Technol 186:54–59. https://doi.org/10.1016/j.jmatprotec.2006.12.006

    Article  CAS  Google Scholar 

  28. Ohtake N, Katoh M, Sugiyama S (2017) High thermal-stability ceria synthesized via thermal-hydrolysis route and methane-combustion performance. J Ceram Soc Jpn 125:57–61. https://doi.org/10.2109/jcersj2.16255

    Article  Google Scholar 

  29. Kaneko K, Inoke K, Freitag B et al (2007) Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. Nano Lett 7:421–425. https://doi.org/10.1021/nl062677b

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Gharbia N, Elsabbagh S, Saleh A, Hafez H (2022) Green microwave synthesis of ZnO and CeO2 nanorods for infectious diseases control and biomedical applications. AMB Express 12:153. https://doi.org/10.1186/s13568-022-01495-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Mao D, Yu J et al (2023) Low-temperature CO oxidation on CuO-CeO2 catalyst prepared by facile one-step solvothermal synthesis: improved activity and moisture resistance via optimizing the activation temperature. Fuel 332:126196. https://doi.org/10.1016/j.fuel.2022.126196

    Article  CAS  Google Scholar 

  32. Song G, Cheng N, Zhang J et al (2021) Nanoscale cerium oxide: synthesis, biocatalytic mechanism, and applications. Catalysts 11:1123. https://doi.org/10.3390/catal11091123

    Article  CAS  Google Scholar 

  33. Hussain I, Singh NB, Singh A et al (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  PubMed  Google Scholar 

  34. Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 47:844–851. https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  PubMed  Google Scholar 

  35. Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379:131–137. https://doi.org/10.1016/j.memsci.2011.05.054

    Article  CAS  Google Scholar 

  36. Kamatou GP, Vermaak I, Viljoen AM (2012) Eugenol—from the remote maluku islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17:6953–6981. https://doi.org/10.3390/molecules17066953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jirovetz L, Buchbauer G, Stoilova I et al (2006) Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem 54:6303–6307. https://doi.org/10.1021/jf060608c

    Article  CAS  PubMed  Google Scholar 

  38. El-Maati MFA, Mahgoub SA, Labib SM et al (2016) Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur J Integr Med 8:494–504. https://doi.org/10.1016/j.eujim.2016.02.006

    Article  Google Scholar 

  39. Tsai T-H, Huang W-C, Lien T-J et al (2017) Clove extract and eugenol suppress inflammatory responses elicited by Propionibacterium acnes in vitro and in vivo. Food Agric Immunol 28:916–931. https://doi.org/10.1080/09540105.2017.1320357

    Article  CAS  Google Scholar 

  40. Mahmoodi P, Motavalizadehkakhky A, Darroudi M et al (2023) Green synthesis of cerium oxide nanoparticles using zucchini peel extract for cytotoxic and photocatalytic properties. Bioprocess Biosyst Eng 46:1163–1173. https://doi.org/10.1007/s00449-023-02888-z

    Article  CAS  PubMed  Google Scholar 

  41. Tabti HA, Adjdir M, Ammam A et al (2020) Facile synthesis of Cu-LDH with different Cu/Al molar ratios: application as antibacterial inhibitors. Res Chem Intermed 46:5377–5390. https://doi.org/10.1007/s11164-020-04268-8

    Article  CAS  Google Scholar 

  42. Arumugam A, Karthikeyan C, Haja Hameed AS et al (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49:408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  43. Jafari H, Ganjali MR, Dezfuli AS, Faridbod F (2018) Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route. Appl Surf Sci 427:496–506. https://doi.org/10.1016/j.apsusc.2017.08.054

    Article  ADS  CAS  Google Scholar 

  44. Mahalakshmi S, Hema N, Vijaya PP (2020) In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route—a comparative study. BioNanoScience 10:112–121. https://doi.org/10.1007/s12668-019-00698-w

    Article  Google Scholar 

  45. Li X, Tao R, Xin Y, Lubineau G (2022) Cassette-like peeling system for testing the adhesion of soft-to-rigid assemblies. Int J Solids Struct 251:111751. https://doi.org/10.1016/j.ijsolstr.2022.111751

    Article  Google Scholar 

  46. Gerzsenyi TB, Ilosvai ÁM, Szilágyi G et al (2023) A simplified and efficient method for production of manganese ferrite magnetic nanoparticles and their application in DNA isolation. Int J Mol Sci 24:2156. https://doi.org/10.3390/ijms24032156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parvathy S, Manjula G, Balachandar R, Subbaiya R (2022) Green synthesis and characterization of cerium oxide nanoparticles from Artabotrys hexapetalus leaf extract and its antibacterial and anticancer properties. Mater Lett 314:131811. https://doi.org/10.1016/j.matlet.2022.131811

    Article  CAS  Google Scholar 

  48. Ahmed HE, Iqbal Y, Aziz MH et al (2021) Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules 26:4659. https://doi.org/10.3390/molecules26154659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anvarinezhad M, Javadi A, Jafarizadeh-Malmiri H (2020) Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles—hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process. Green Process Synth 9:375–385. https://doi.org/10.1515/gps-2020-0040

    Article  Google Scholar 

  50. Bensalem A, Muller JC, Bozon-Verduraz F (1992) Faraday communications. From bulk CeO 2 to supported cerium–oxygen clusters: a diffuse reflectance approach. J Chem Soc Faraday Trans 88:153–154. https://doi.org/10.1039/FT9928800153

    Article  CAS  Google Scholar 

  51. Abhilash MR, Akshatha G, Srikantaswamy S (2019) Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC Adv 9:8557–8568. https://doi.org/10.1039/C8RA09929D

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vidal F, Eddrief M, Rache Salles B et al (2013) Photon energy dependence of circular dichroism in angle-resolved photoemission spectroscopy of Bi2Se3 Dirac states. Phys Rev B 88:241410. https://doi.org/10.1103/PhysRevB.88.241410

    Article  ADS  CAS  Google Scholar 

  53. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  MathSciNet  Google Scholar 

  54. Killivalavan G, Sathyaseelan B, Kavitha G et al (2020) Cobalt metal ion doped cerium oxide (Co-CeO2) nanoparticles effect enhanced photocatalytic activity. MRS Adv 5:2503–2515. https://doi.org/10.1557/adv.2020.296

    Article  CAS  Google Scholar 

  55. Ranjith KS, Dong C-L, Lu Y-R et al (2018) Evolution of visible photocatalytic properties of Cu-doped CeO2 nanoparticles: role of Cu2+-mediated oxygen vacancies and the mixed-valence states of Ce ions. ACS Sustain Chem Eng 6:8536–8546. https://doi.org/10.1021/acssuschemeng.8b00848

    Article  CAS  Google Scholar 

  56. Pathak TK, Coetsee-Hugo E, Swart HC et al (2020) Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications. Mater Sci Eng B 261:114780. https://doi.org/10.1016/j.mseb.2020.114780

    Article  CAS  Google Scholar 

  57. Choi YI, Kim Y-I, Cho DW et al (2015) Recyclable magnetic CoFe2O4/BiOX (X = Cl, Br and I) microflowers for photocatalytic treatment of water contaminated with methyl orange, rhodamine B, methylene blue, and a mixed dye. RSC Adv 5:79624–79634. https://doi.org/10.1039/C5RA17616F

    Article  ADS  CAS  Google Scholar 

  58. Tang S, Wang Z, Deling S et al (2020) Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. Int J Electrochem Sci 15:2470–2480. https://doi.org/10.20964/2020.03.09

    Article  CAS  Google Scholar 

  59. Das GS, Shim JP, Bhatnagar A et al (2019) Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(III) and ascorbic acid. Sci Rep 9:15084. https://doi.org/10.1038/s41598-019-49266-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Atta AM, Moustafa YM, Al-Lohedan HA et al (2020) Methylene blue catalytic degradation using silver and magnetite nanoparticles functionalized with a poly(ionic liquid) based on quaternized dialkylethanolamine with 2-acrylamido-2-methylpropane sulfonate-co-vinylpyrrolidone. ACS Omega 5:2829–2842. https://doi.org/10.1021/acsomega.9b03610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hajipour P, Bahrami A, Eslami A et al (2020) Chemical bath synthesis of CuO-GO-Ag nanocomposites with enhanced antibacterial properties. J Alloys Compd 821:153456. https://doi.org/10.1016/j.jallcom.2019.153456

    Article  CAS  Google Scholar 

  62. Elshypany R, Selim H, Zakaria K et al (2021) Elaboration of Fe3O4/ZnO nanocomposite with highly performance photocatalytic activity for degradation methylene blue under visible light irradiation. Environ Technol Innov 23:101710. https://doi.org/10.1016/j.eti.2021.101710

    Article  CAS  Google Scholar 

  63. Ahmed MK, El-Naggar ME, Aldalbahi A et al (2020) Methylene blue degradation under visible light of metallic nanoparticles scattered into graphene oxide using laser ablation technique in aqueous solutions. J Mol Liq 315:113794. https://doi.org/10.1016/j.molliq.2020.113794

    Article  CAS  Google Scholar 

  64. Arabi A, Fazli M, Ehsani MH (2018) Synthesis and characterization of calcium-doped lanthanum manganite nanowires as a photocatalyst for degradation of methylene blue solution under visible light irradiation. Bull Mater Sci 41:77. https://doi.org/10.1007/s12034-018-1590-6

    Article  CAS  Google Scholar 

  65. Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134. https://doi.org/10.1021/nn800511k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chandraker SK, Kumar R (2022) Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev. https://doi.org/10.1080/02648725.2022.2106084

    Article  PubMed  Google Scholar 

  67. Nguyen THA, Nguyen V-C, Phan TNH et al (2022) Novel biogenic silver and gold nanoparticles for multifunctional applications: green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe(III) ions. Chemosphere 287:132271. https://doi.org/10.1016/j.chemosphere.2021.132271

    Article  CAS  PubMed  Google Scholar 

  68. Munawar T, Mukhtar F, Nadeem MS et al (2020) Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite. Solid State Sci 109:106446. https://doi.org/10.1016/j.solidstatesciences.2020.106446

    Article  CAS  Google Scholar 

  69. Eka Putri G, Rilda Y, Syukri S et al (2021) Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J Mater Res Technol 15:2355–2364. https://doi.org/10.1016/j.jmrt.2021.09.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to Dr. Nor el Houda Goual and Dr. Chakib Alaoui for their invaluable support and assistance. Additionally, the corresponding author expresses gratitude to all individuals who have contributed to this work, from its inception to its eventual publication.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: Brahim Djemoui, Mehdi Adjdir; Formal analysis: Zohra Taibi, Abdelhalim Zoukel; Writing—original draft preparation: Brahim Djemoui; Writing—review and editing: Mehdi Adjdir, Choukry Kamel Bendeddouche, Miloud Mohamed Mazari, Samia Gharbi, Noureddine Karkachi; Investigation: Brahim Djemoui, Mehdi Adjdir; Resources: Samia Gharbi, Noureddine Karkachi; Supervision: Mehdi Adjdir. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mehdi Adjdir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djemoui, B., Gharbi, S., Bendeddouche, C.K. et al. Green synthesis of ZnO-doped cerium oxide nanocomposite using clove extract: enhanced photocatalytic methylene blue degradation and antibacterial properties. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02610-4

Keywords

Navigation