Skip to main content
Log in

Highly efficient dehydration of fructose to 5-hydroxymethylfurfural in a green deep eutectic solvents system

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The main objective of this study is to investigate the use of the deep eutectic solvent (DES) composed of choline chloride and sulfamic acid as a catalyst for the dehydration of fructose to produce 5-hydroxymethylfurfural in a two-phase solution of MIBK/H2O. The yield of 5-hydroxymethylfurfural (5-HMF) was measured for fructose solutions with varying concentrations of DES. The results showed that under optimized conditions, a competitive yield of 90.44% 5-HMF was achieved in a biphasic system of water and methyl-isobutylketone (MIBK). The study also revealed that the yield of 5-HMF was influenced by the concentration of DES and the temperature of the system. The impact of these factors on the yield of 5-HMF was further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lei Hu, Zhen Wu, Jiaxing Xu, Yong Sun Lu, Lin SL (2014) Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem Eng J 244:137–144

    Article  Google Scholar 

  2. Zhang J, Cao Y, Li H, Ma X (2014) Kinetic studies on chromium-catalyzed conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium chloride ionic liquid. Chem Eng J 237:55–61

    Article  CAS  Google Scholar 

  3. Niakan M, Masteri-Farahani M (2022) An efficient clean and sustainable methodology for catalytic C-C coupling process over a Pd-free magnetically recoverable cobalt catalyst. J Mol Liq 355:118932

    Article  CAS  Google Scholar 

  4. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2006) Greener media in chemical synthesis and processing. Angew Chem Int Ed 45(24):3904–3908

    Article  CAS  Google Scholar 

  5. Yang D, Hou M, Ning H, Zhang J, Ma J, Yanga G, Han B (2013) Efficient SO2 absorption by renewable choline chloride–glycerol deep eutectic solvents. Green Chem 15(8):2261–2265

    Article  CAS  Google Scholar 

  6. Abbott AP (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  7. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147

    Article  CAS  PubMed  Google Scholar 

  8. Leroy E, Decaen P, Jacquet P, Coativy G, Pontoire B, Reguerre A-L, Lourdin D (2012) Deep eutectic solvents as functional additives for starch based plastics. Green Chem 14(11):3063–3066

    Article  CAS  Google Scholar 

  9. Durand E, Lecomte J, Baréa B, Dubreucq E, Lortie R, Villeneuve P (2013) Evaluation of deep eutectic solvent–water binary mixtures for lipase-catalyzed lipophilization of phenolic acids. Green Chem 15(8):2275–2282

    Article  CAS  Google Scholar 

  10. Morais ES, Mendonça PV, Coelho FJ, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD (2018) Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood xylans. Chemsuschem 11(4):753–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pethsangave DA, Khose RV, Wadekar PH, Some S (2017) Deep eutectic solvent functionalized graphene composite as an extremely high potency flame retardant. ACS Appl Mater Interfaces 9(40):35319–35324

    Article  CAS  PubMed  Google Scholar 

  12. Niakan M, Karimi S, Masteri-Farahani M, Shekaari H (2021) An efficient, cost-effective, and magnetically recoverable copper catalyst for O-arylation of phenols with aryl halides in choline chloride-based deep eutectic solvents. Colloids Surf A 620:126603

    Article  CAS  Google Scholar 

  13. Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour Technol 238:684–689

    Article  CAS  PubMed  Google Scholar 

  14. Xia Q, Liu Y, Meng J, Cheng W, Chen W, Liu S, Liu Y, Lia J, Haipeng Yu (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20(12):2711–2721

    Article  CAS  Google Scholar 

  15. Shen X, Wen J, Mei Q, Chen X, Sun D, Yuan T, Sun R (2019) Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem 21(2):275–283

    Article  CAS  Google Scholar 

  16. Suqin Hu, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11(6):873–877

    Article  Google Scholar 

  17. Krystof M, Pérez-Sánchez M, Domínguezde María P (2013) Lipase-catalyzed (Trans) esterification of 5-hydroxy-methylfurfural and separation from HMF esters using deep-eutectic solvents. Chemsuschem 6(4):630–634

    Article  CAS  PubMed  Google Scholar 

  18. Jiang S, Verrier C, Ahmar M, Lai J, Ma C, Muller E, Queneau Y, Pera-Titus M, Jérôm F, De Oliveira Vigier K (2018) Unveiling the role of choline chloride in furfural synthesis from highly concentrated feeds of xylose. Green Chem 20(22):5104–5110

    Article  CAS  Google Scholar 

  19. Niakan M, Masteri-Farahani M, Seidi F (2022) Efficient glucose-to-HMF conversion in deep eutectic solvents over sulfonated dendrimer modified activated carbon. Renew Energy 200:1134–1140

    Article  CAS  Google Scholar 

  20. Mankar AR, Pandey A, Modak A, Pant KK (2021) Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst. Renew Energy 177:643–651

    Article  Google Scholar 

  21. Qi X, Watanabe M, Aida TM, Smith RL (2010) Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. Chemsuschem 3(9):1071–1077

    Article  CAS  PubMed  Google Scholar 

  22. Suqin Hu, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Ye (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10(12):1280–1283

    Article  Google Scholar 

  23. Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, König B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11(12):1948–1954

    Article  CAS  Google Scholar 

  24. Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S (2014) Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. Chemsuschem 7(1):117–126

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  PubMed  Google Scholar 

  26. Kaur S, Gupta A, Kashyap HK (2018) Unusual temperature dependence of nanoscale structural organization in deep eutectic solvents. J Phys Chem B 120:6712–6720

    Article  Google Scholar 

  27. Hammond OS, Bowron DT, Edler KJ (2016) Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling. Green Chem 18:2736–2744

    Article  CAS  Google Scholar 

  28. Zhang Q, Vigier K, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  Google Scholar 

  29. Smith E, Abbott A, Ryder K (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  PubMed  Google Scholar 

  30. Vigier KD, Oliveira GC, Jerome F (2015) Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7(8):1250–1260

    Article  CAS  Google Scholar 

  31. Lima S, Antunes MM, Fernandes A, Pillinger M, Ribeiro MF, Valente AA (2010) Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Appl Catal A Gen 388:141–148

    Article  CAS  Google Scholar 

  32. Murat Sen S, Gürbüz EI, Wettstein SG, Alonso DM, Dumesic JA, Maravelias CT (2012) Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation. Green Chem 14(12):3289–3294

    Article  Google Scholar 

  33. Marshall WL, Franck EU (1981) Ion product of water substance, 0–1000 C, 1–10,000 bars new international formulation and its background. J Phys Chem Ref Data 10(2):295–304

    Article  CAS  Google Scholar 

  34. Zhanga Z, Liua B, Zhao ZK (2012) Conversion of fructose into 5-HMF catalyzed by GeCl4 in DMSO and [Bmim] Cl system at room temperature. Carbohydr Polym 88:891–895

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Doctor Startup Foundation of the Jilin Institute of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, C. & Zhang, L. Highly efficient dehydration of fructose to 5-hydroxymethylfurfural in a green deep eutectic solvents system. Reac Kinet Mech Cat 136, 2893–2906 (2023). https://doi.org/10.1007/s11144-023-02495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02495-9

Keywords

Navigation