Skip to main content
Log in

Synthesis of Ni nanopowders with cauliflower-like shapes and their catalytic property on the thermal decomposition of ammonium perchlorate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The study aims to synthesize Ni nanopowders by a facile method and understand the influence of Ni nanopowders on ammonium perchlorate (AP) thermal decomposition. Ni nanopowders with cauliflower-like shapes were prepared by simple reduction method at 80 °C with sodium hypophosphite as the reduction reagent. The morphologies, structure, composition and surface area of these nanopowders were analyzed by means of FESEM, XRD, EDS and BET. The results showed that the synthesized samples were evenly distributed and nanosized Ni with cauliflower-like shapes, with specific surface area of 9.7 m2/g. The catalytic property of Ni nanopowders on the thermal decomposition of AP was investigated by DSC tests. The results indicated that Ni nanopowders with cauliflower-like shapes had significant catalytic properties on AP thermal decomposition. Especially, Ni nanopowders with 8% addition in AP exhibited relatively higher catalytic activity, reducing decomposition temperature by about 144 °C and increasing apparent decomposition heat by 674 J/g. Kinetic analysis was carried out according to Kissinger method. The results showed that, after Ni nanopowders with cauliflower-like shapes were introduced, the activation energy of AP thermal decomposition decreased by 47% and the reaction rate constant grew by more than 115 times. In addition, the possible mechanism of AP thermal decomposition catalyzed by Ni nanopowders was briefly discussed. This study has certain theoretical and practical value for the synthesis of metal nanopowders and their catalytic application on the combustion behavior of AP-based solid propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fertassi MA, Liu Q, Li R, Liu P, Liu J, Chen RR, Liu L, Wang J (2017) Ex situ synthesis of G/alpha-Fe2O3 nanocomposite and its catalytic effect on the thermal decomposition of ammonium perchlorate. Bull Mater Sci 40:691–698

    Article  CAS  Google Scholar 

  2. Isert S, Xin L, Xie J, Son SF (2017) The effect of decorated graphene addition on the burning rate of ammonium perchlorate composite propellants. Combust Flame 183:322–329

    Article  CAS  Google Scholar 

  3. Nagendra K, Raj Alexander Y, Ramakrishna PA (2017) Extinction of AP monopropellant by rapid depressurization: computational and experimental studies. Combust Flame 184:90–100

    Article  Google Scholar 

  4. Gao K, Li GP, Luo YJ, Wang L, Shen LH, Wang G, Ren JN, Xu BB, Algadi H, Yang YY (2014) Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites. J Therm Anal Calorim 118:43–49

    Article  CAS  Google Scholar 

  5. Liang TX, Yang XJ, Liu B, Song RD, Xiao F, Yang YJ, Wang D, Dong MY (2023) Ammonium perchlorate@graphene oxide/Cu-MOF composites for efficiently catalyzing the thermal decomposition of ammonium perchlorate. Adv Compos Hybrid Ma 6:67

    Article  CAS  Google Scholar 

  6. Duan HZ, Lin XY, Liu GP, Xu L, Li FS (2008) Synthesis of Ni nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate. J Mater Process Technol 208:494–498

    Article  CAS  Google Scholar 

  7. Duan GR, Yang XJ, Chen J, Huang GH, Lu LD, Wang X (2007) The catalytic effect of nanosized MgO on the decomposition of ammonium perchlorate. Powder Technol 172:27–29

    Article  CAS  Google Scholar 

  8. Zhang YF, Ma MZ, Zhang XY, Wang BA, Liu RP (2014) Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes. J Alloys Compd 590:373–379

    Article  CAS  Google Scholar 

  9. Hu YH, Yang SM, Tao BW, Liu XL, Lin KF, Yang YL, Fan RQ, Xia DB, Hao DY (2019) Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum 159:105–111

    Article  CAS  Google Scholar 

  10. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R (2012) Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol 217:330–339

    Article  CAS  Google Scholar 

  11. Ayoman E, Hosseini SG (2016) Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim 123:1213–1224

    Article  CAS  Google Scholar 

  12. Yu CP, Zhang WC, Gao Y, Chen YJ, Ma KF, Ye JH, Shen RQ, Yang Y (2018) Shape-controlled syntheses of Co3O4 nanowires arrays with excellent catalytic performances upon ammonium perchlorate decomposition. Mater Res Bull 97:483–489

    Article  CAS  Google Scholar 

  13. Sharmaa JK, Srivastavaa P, Singha G, Shaheer Akhtar M, Ameen S (2015) Green synthesis of Co3O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells. Mater Sci Eng B 193:181–188

    Article  Google Scholar 

  14. Hosseini SG, Toloti SJH, Babaei K, Ghavi A (2016) The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim 124:1243–1254

    Article  CAS  Google Scholar 

  15. Zhang M, Zhao FQ, Yang YJ, An T, Qu WG, Li H, Zhang JK, Li N (2020) Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech 45:463–471

    Article  CAS  Google Scholar 

  16. Chen J, He SM, Liu YS, Qiao ZQ, Huang B, Li XD, Hao QL, Huang H, Yang GC (2021) Highly active catalysts based on 3D hierarchically ordered porous carbon with entrapped Fe2O3 nanoparticles for the thermal decomposition of ammonium perchlorate. Appl Surf Sci 538:148148

    Article  CAS  Google Scholar 

  17. Singh S, Singh G, Kulkarni N, Mathe VL, Bhoraskar SV (2015) Synthesis, characterization and catalytic activity of Al/Fe2O3 nanothermite. J Therm Anal Calorim 119:309–317

    Article  CAS  Google Scholar 

  18. Xu PF, Lu YW, Ye P, Wang Q, Guo CP (2021) In situ synthesis of copper stearate/ammonium perchlorate shell–core composite for self-catalytic thermal decomposition. J Therm Anal Calorim 146:11–15

    Article  CAS  Google Scholar 

  19. Zheng SJ, Liu J, Wang YK, Li FS, Xiao L, Ke X, Hao GZ, Jiang W, Li D, Li Y, Lan ZG (2018) Effect of aluminum morphology on thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 134:1823–1828

    Article  CAS  Google Scholar 

  20. Chen WF, Li FS, Liu LL, Li YQ (2006) Synthesis of Nano-sized yttria via a sol-gel process based on hydrated yttrium nitrate and ethylene glycol and its catalytic performance for thermal decomposition of NH4 C1O4. J Rare Earth 24:543–548

    Article  Google Scholar 

  21. Li R, Li XD, Yang GC, Guo CP, Zhang LQ, Hao CC, Zhu WK (2023) Defective-activated-carbon-encapsulated Co as a super reactive catalyst for combustion of ammonium perchlorate. Appl Surf Sci 615:156349

    Article  CAS  Google Scholar 

  22. Inokawa H, Ichikawa T, Miyaoka H (2015) Catalysis of nickel nanoparticles with high thermal stability for ammonia decomposition. Appl Catal A: Gen 491:184–188

    Article  CAS  Google Scholar 

  23. Kamal T, Asiri Abdullah M, Nauman A (2021) Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges. Spectrochim Acta Part A 261:120019

    Article  CAS  Google Scholar 

  24. Kiran S, Rafique MA, Iqbal S, Nosheen S, Naz S, Rasheed A (2020) Synthesis of nickel nanoparticles using citrullus colocynthis stem extract for remediation of reactive yellow 160 dye. Environ Sci Pollut R 27:32998–33007

    Article  CAS  Google Scholar 

  25. Lanje AS, Sharma SJ, Pode RB (2010) Magnetic and electrical properties of nickel nanoparticles prepared by hydrazine reduction method. Arch Phys Res 1(1):49–56

    CAS  Google Scholar 

  26. Chen YJ, Li XY, Liu X, Liu C, Zhang ZH, Sang WX, Chen R (2019) Study on removal of U(VI) in aqueous solution with nano-zero-valent nickel. J Nonferrous Met 2:71–75

    Google Scholar 

  27. El komy GM, Abomostafa H, Azab AA, Selim MM (2019) Innovative synthesis of nickel nanoparticles in polystyrene matrix with enhanced optical and magnetic properties. J Inorg Organomet 29:1983–1994

    Article  CAS  Google Scholar 

  28. Chou KS, Huang KC (2001) Studies on the chemical synthesis of nanosized nickel powder and its stability. J Nanopart Res 3:127–132

    Article  CAS  Google Scholar 

  29. Liu SN, Tam SK, Ng KM (2021) Dual-reductant synthesis of nickel nanoparticles for use in screen-printing conductive paste. J Nanopart Res 23:78

    Article  CAS  Google Scholar 

  30. Eluri R, Paul B (2012) Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis. J Nanopart Res 14:800

    Article  Google Scholar 

  31. Yakymovych A, Ipser H (2017) Synthesis and characterization of pure Ni and Ni-Sn intermetallic nanoparticles. Nanoscale Res Lett 12:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kytsya AR, Bazylyak LI, Zavaliy IYu, Verbovytskyy YuV, Zavalij P (2022) Synthesis, structure and hydrogenation properties of Ni-Cu bimetallic nanoparticles. Appl Nanosci 12:1183–1190

    Article  CAS  Google Scholar 

  33. Rana MZ, Mehmood M, Ahmad J, Aslam M, Hasanain SK, Hameed S (2011) Synthesis of nickel nanoparticles in silica by alcogel electrolysis. J Nanopart Res 13:375–384

    Article  CAS  Google Scholar 

  34. Bouremana A, Mouaci S, Berriah A, Boutebina Z, Manseri A, Bensouilah A (2022) High yield solvothermal synthesis of Ni nanoparticles: structural, microstructural, and magnetic properties. J Nanopart Res 24:204

    Article  CAS  Google Scholar 

  35. Liu DY, Ren S, Wang GS, Wen LS, Yu J (2009) Rapid synthesis and morphology control of nickel powders via a microwave-assisted chemical reduction method. J Mater Sci 44:108–113

    Article  CAS  Google Scholar 

  36. Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Microwave-assisted synthesis of nickel nanoparticles. Mater Lett 62:2571–2573

    Article  CAS  Google Scholar 

  37. Zhang T, Shi HB, Zhang YB, Liu Q, Fei WY, Wang T (2021) Hollow flower-like nickel particles as the promoter of ammonium perchlorate-based solid propellant. Appl Surf Sci 552:149506

    Article  CAS  Google Scholar 

  38. Nourine M, Boulkadid MK, Touidjine S, Akbi H, Belkhiri S (2023) Preparation of surface modified ammonium perchlorate with green iron oxide nitrocellulose nanocomposite for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys 303:127784

    Article  CAS  Google Scholar 

  39. Lu YW, Chen J, Wang RH, Xu PF, Zhang XQ, Gao B, Guo CP, Yang GC (2019) Bio-inspired Cu-alginate to smartly enhance safety performance and the thermal decomposition of ammonium perchlorate. Appl Surf Sci 470:269–275

    Article  CAS  Google Scholar 

  40. Luo HK, Yin ZW, Zhao YX, Li XJ, Sun TQ, Yang SJ (2023) Interfacial effects of Fe2O3@Co3O4 on the thermal decomposition of ammonium perchlorate. Mater Res Bull 165:112291

    Article  CAS  Google Scholar 

  41. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  42. Dhyani V, Kumar J, Bhaskar T (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour Technol 245:1122–1129

    Article  CAS  PubMed  Google Scholar 

  43. Ceylan S, Kazan D (2015) Pyrolysis kinetics and thermal characteristics of microalgae nannochloropsis oculata and tetraselmis sp. Bioresour Technol 187:1–5

    Article  CAS  PubMed  Google Scholar 

  44. Hosseini SG, Sheikhpour A, Keshavarz MH, Tavangar S (2016) The effect of metal oxide particle size on the thermal behavior and ignition kinetic of Mg–CuO thermite mixture. Thermochim Acta 626:1–8

    Article  CAS  Google Scholar 

  45. Wen T, Feng Y, Bi YQ, Xu L, Guo CP (2022) 3D porous nano Co3O4/C composite catalyst for the thermal decomposition of ammonium perchlorate. Mater Today Commun 33:104294

    Article  CAS  Google Scholar 

  46. Zhang YF, Song AJ, Ma DQ, Ma MZ (2021) The catalytic decomposition and kinetic analysis of ammonium perchlorate on MgO nanoflakes. J Phys Chem Solids 157:110205

    Article  CAS  Google Scholar 

  47. Bekhouche S, Trache D, Abdelaziz A, Tarchoun AF, Boukeciat H (2023) Effect of fluorine-containing thermite coated with potassium perchlorate on the thermal decomposition behavior and kinetics of ammonium perchlorate. Thermochim Acta 720:179413

    Article  CAS  Google Scholar 

  48. Dourari M, Tarchoun AF, Trache D, Abdelaziz A, Barkat T, Tiliouine R, Bekhouche S, Bessa W (2023) Elucidating the effect of nitrocellulose-encapsulated MgAl–CuO on the thermal behavior of double base propellant based on nitrocellulose and diethylene glycol dinitrate. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-023-02448-2

    Article  Google Scholar 

  49. Xuan CL, Zhao FQ, Xiao L, Hao GZ, Jiang W (2018) Preparation of nano-sized CuFe2O4 and its catalytic effects on the thermal decomposition of ammonium perchlorate. J Solid Rocket Technol 41:343–348

    Google Scholar 

  50. Chen T, Hu Y, Zhang C, Gao Z (2021) Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Def Technol 17:1471–1485

    Article  Google Scholar 

  51. Shi Z, Tang C, Xu Y, Hu Y, Zhang J, Zhu Z, Zheng J, Fan R, Xia D, Yang Y (2022) New insights into the catalytic decomposition of ammonium perchlorate and decomposition mechanism by Nano-CuO dispersed in graphite-carbon nitride nanosheet composites. Chem Nano Mat 8:e202200118

    CAS  Google Scholar 

  52. Mani G, Jos J, Radhakrishnan Nair P, Mathew S (2021) Investigation of kinetic parameters for ammonium perchlorate thermal decomposition in presence of gCN/CuO by TG-MS analysis and kinetic compensation correction. J Solid State Chem 301:122301

    Article  CAS  Google Scholar 

  53. Bircomshaw LL, Newman BH (1955) Thermal decomposition of ammonium perchlorate. Proc R Soc A 227:228–237

    Google Scholar 

  54. Galwey AK, Jacobs P (1960) Thermal decomposition of ammonium perchlorate at low-temperatures. Proc R Soc A 254:455–469

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Grant No. 52071278/51827801), the National Key Research and Development Program of China (Grant No. 2018YFA0703603), PhD Fund Project (Grant No. 19YB1001) and Science and Technology Research Project of Colleges and Universities in Hebei Province (Grant No. ZC2023173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Z. & Ma, M. Synthesis of Ni nanopowders with cauliflower-like shapes and their catalytic property on the thermal decomposition of ammonium perchlorate. Reac Kinet Mech Cat 136, 2327–2341 (2023). https://doi.org/10.1007/s11144-023-02473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02473-1

Keywords

Navigation