Skip to main content
Log in

Mathematical modeling of the homogeneous-heterogeneous non-oxidative CH4 conversion: the role of gas-phase H or CH3

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Dynamics of the non-oxidative conversion of methane in a moving mixture of the catalyst nanoparticles and the reacting gas is under study using the methods of mathematical modeling. Considered compact mechanism of the reaction takes into account activation of methane both on the surface of the catalyst nanoparticles (NPs) and in the gas phase, with the production of C2Hn, n = 2, 4, 6, C6H6 and H2. At this, the desorption of H or CH3 increases the rates of the reactions in the gas phase. Under the parametric analysis of the kinetic model, we defined some values of the temperature, the energy of catalytic activation of methane and the concentration of the catalyst NPs at which both the methane conversion and the C2H6 and C2H4 selectivity increase. Within the non-isothermal model of the flow fluidized-like bed wall-less reactor we studied the influence of the mass and heat transfer of the conversion of methane and mole fractions of the products of the reaction. In results of the studies, we describe the case when due to the activation of methane the catalyst NPs are cooling, which lead to cooling of the gas via the convective heat transfer. We also simulate the case of the two-temperature regime (the catalyst NPs are colder than the gas phase), which allows maintaining a limited set of products of the reaction, namely, hydrogen, ethane and ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen C-J, Back MH, Back RA (1975) The thermal decomposition of methane. I. Kinetics of the primary decomposition to C2H6 + H2; rate constant for the hondmogeneous unimolecular dissociation of methane and its pressure dependence. Can J Chem 53:3580–3590

    Article  CAS  Google Scholar 

  2. Dean AM (1990) Detailed kinetic modeling of autocatalysis in methane pyrolysis. J Phys Chem 94:1432–1439

    Article  CAS  Google Scholar 

  3. Albright LF, Crynes BL, Corcoran WH (1983) Pyrolysis. Theory and industrial practice. Academic Press, New York

    Google Scholar 

  4. Younessi-Sinaki M, Matida EA, Hamdullahpur F (2009) Kinetic model of homogeneous thermal decomposition of methane and ethane. Int J Hydrogen Energy 34:3710–3716

    Article  CAS  Google Scholar 

  5. Kumar G, Lau SLJ, Krcha DM, Janik MJ (2016) Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal 6(3):1812–1821

    Article  CAS  Google Scholar 

  6. Wang B, Albarracín-Suazo S, Pagán-Torres Y, Nikolla E (2017) Advances in methane conversion processes. Catal Today 285:147–158

    Article  CAS  Google Scholar 

  7. Quiceno R, Pérez-Ramírez J, Warnatz J, Deutschmann O (2006) Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: detailed gas-phase and surface chemistries coupled with 3D flow field simulations. Appl Cat A 303:166–176

    Article  CAS  Google Scholar 

  8. Burghgraef H, Jansen APJ, van Santen RA (1995) Methane activation and dehydrogenation on nickel and cobalt: a computational study. Surf Sci 324:345–356

    Article  CAS  Google Scholar 

  9. Rostrup-Nielsen J, Trimm DL (1977) Mechanisms of carbon formation on nickel-containing catalysts. J Catal 48:155–165

    Article  CAS  Google Scholar 

  10. Torres D, de Llobet S, Pinilla JL, Lázaro ML, Suelves I, Moliner R (2012) Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. J Nat Gas Chem 21:367–373

    Article  CAS  Google Scholar 

  11. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184):616–619

    Article  CAS  PubMed  Google Scholar 

  12. Eggart D, Huang X, Zimina A, Yang J, Pan Y, Pan X, Grunwaldt J-D (2022) Operando XAS study of Pt-doped CeO2 for the nonoxidative conversion of methane. ACS Catal 12(7):3897–3908

    Article  CAS  Google Scholar 

  13. Dipu AL, Ohbuchi Sh, Nishikawa Y, Iguchi Sh, Ogihara H, Yamanaka I (2020) Direct nonoxidative conversion of methane to higher hydrocarbons over silica-supported nickel phosphide catalyst. ACS Catal 10(1):375–379

    Article  CAS  Google Scholar 

  14. Han SJ, Gebreyohannes TG, Woolee S, Kim SK, Kim HW, Shin J, Kim YT (2023) Methane direct conversion to olefins, aromatics, and hydrogen over silica entrapped bimetallic MeFe-SiO2 (Me = Co, Ni, Pd, Pt) catalysts. Molec Catal 535:112864

    Article  CAS  Google Scholar 

  15. Donazzi A, Livio D, Maestri M, Beretta A, Groppi G, Tronconi E, Forzatti P (2011) Synergy of homogeneous and heterogeneous chemistry probed by in situ spatially resolved measurements of temperature and composition. Angew Chem 50(17):3943–3946

    Article  CAS  Google Scholar 

  16. Li L, Borry RW, Iglesia E (2001) Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal—homogeneous–heterogeneous reaction pathways. Chem Eng Sci 56:1869–1881

    Article  CAS  Google Scholar 

  17. Zhuzhgov AV, Zaitseva NA, Kostyukov AI, Baronskiy MG, Nashivochnikov AA, Snytnikov VN (2023) Effect of the laser-synthesized γ-Al2O3 support on the activity of Fe/γ-Al2O3 nanopowders in dehydrogenation of isobutane. Mol Catal 535:112892

    Article  CAS  Google Scholar 

  18. Kostyukov AI, Zaitseva NA, Baronskiy MG, Nashivochnikov AA, Snytnikov VN (2022) Catalytic activity of laser-synthesized CrOx/Al2O3 nanocatalysts with different particle sizes in isobutane dehydrogenation. J Nanoparticle Res 24:144

    Article  CAS  Google Scholar 

  19. Stadnichenko OA, Nurislamova LF, Masyuk NS, Snytnikov VN, Snytnikov VN (2018) Radical mechanism for the gas-phase thermal decomposition of propane. Reac Kinet Mech Catal 123:607–624

    Article  CAS  Google Scholar 

  20. Masyuk N, Sherin A, Snytnikov VN (2018) Effect of infrared laser radiation on gas-phase pyrolysis of ethane. J Anal Appl Pyrol 134:122–129

    Article  CAS  Google Scholar 

  21. Postma RS, Mendes PSF, Pirro L, Banerjee A, Thybaut JW, Lefferts L (2023) Modelling of the catalytic initiation of methane coupling under non-oxidative conditions. Chem Eng J 454:140273

    Article  CAS  Google Scholar 

  22. Kim SK, Kim HW, Han SJ, Lee SW, Shin J, Kim YT (2020) Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst. Commun Chem 3:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toraman HE, Alexopoulos K, Oh SC, Cheng S, Liu D, Vlachos DG (2021) Ethylene production by direct conversion of methane over isolated single active centers. Chem Eng J 420:130493

    Article  CAS  Google Scholar 

  24. Schultz RH, Elkind JL, Armentrout PB (1988) Electronic effects in C-H and C-C bond activation. State-specific reactions of FE+ (6D,4F) with methane, ethane, and propane. J Am Chem Soc 110:411–423

    Article  CAS  Google Scholar 

  25. Hao J, Schwach P, Fang G, Guo X, Zhang H, Shen H, Huang X, Eggart D, Pan X, Bao X (2019) Enhanced Methane conversion to olefins and aromatics by H-donor molecules under nonoxidative condition. ACS Catal 9:9045–9050

    Article  CAS  Google Scholar 

  26. Hao J, Schwach P, Li L, Guo X, Weng J, Zhang H, Shen H, Fang G, Huang X, Pan X, Xiao C, Yang X, Bao X (2021) Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction. J Energy Chem 52:372–376

    Article  CAS  Google Scholar 

  27. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics/index.jsp.

  28. Han SJ, Lee SW, Kim HW, Kim SK, Kim YT (2019) Nonoxidative direct conversion of methane on silica-based iron catalysts: effect of catalytic surface. ACS Catal 9:7984–7997

    Article  CAS  Google Scholar 

  29. Peskova EE (2021) Numerical modeling of subsonic axisymmetric reacting gas flows. J Phys Conf Ser 2057:012071

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Russian Science Foundation, grant number 21-19-00429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Lashina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 1207 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashina, E.A., Peskova, E.E. & Snytnikov, V.N. Mathematical modeling of the homogeneous-heterogeneous non-oxidative CH4 conversion: the role of gas-phase H or CH3. Reac Kinet Mech Cat 136, 1775–1789 (2023). https://doi.org/10.1007/s11144-023-02442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02442-8

Keywords

Navigation