Skip to main content
Log in

Sulfurized NiFe bimetallic electrocatalysts derived from Prussian blue analogues for oxygen evolution reactions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, NiFe PBA-S was synthesized on nickel foam (NF) for electrocatalytic oxygen production. The experimental results show that the catalyst exhibits excellent OER performance at 10 mA cm−2 current density, overpotential of 201 m V and good durability within 24 h. Compared with other materials, NiFe PBA-S/NF has better catalytic performance. We believe that the enhanced catalytic activity is due to the use of Prussian blue derivatives (PBAs), NiFe PBA has excellent electron transport capacity. Larger specific surface area provides a large number of active sites. Sulfur doping enhances the stability of the material. The combination of the two comprehensively improves the catalytic activity and stability of the catalyst.

Graphical abstract

Schematic illustration of the formation of diverse PBAs and derivatives on nickel foam

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu Q, Gao QP, Sun LM, Guo HM, Tai XS, Li D, Liu L, Ling CY, Sun XP (2021) Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chin J Catal 42:482–489. https://doi.org/10.1016/s1872-2067(20)63663-4

    Article  CAS  Google Scholar 

  2. Wei B, Xu GC, Hei JC, Zhang L, Huang TT (2021) PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. Int J Hydrog Energy 46:2225–2235. https://doi.org/10.1016/j.ijhydene.2020.10.150

    Article  CAS  Google Scholar 

  3. Li D, Liu CC, Ma WX, Xu SJ, Lu YK, Wei WX, Zhu JJ, Jiang DL (2021) Fe-doped NiCoP/Prussian blue analog hollow nanocubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 367:8. https://doi.org/10.1016/j.electacta.2020.137492

    Article  CAS  Google Scholar 

  4. Hou JT, Tang ZM, Wei KY, Lai QX, Liang YY (2021) Surface reconstruction of Ni doped Co-Fe Prussian blue analogues for enhanced oxygen evolution. Catal Sci Technol 11:1110–1115. https://doi.org/10.1039/d0cy02107e

    Article  CAS  Google Scholar 

  5. Zhang WX, Song H, Cheng Y, Liu C, Wang CH, Khan MAN, Zhang H, Liu JZ, Yu CZ, Wang LJ, Li JS (2019) Core-shell Prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction. Adv Sci 6:9. https://doi.org/10.1002/advs.201801901

    Article  CAS  Google Scholar 

  6. Wang YY, Wang Y, Zhang L, Liu CS, Pang H (2019) PBA@POM Hybrids as efficient electrocatalysts for the oxygen evolution reaction. Chem-Asian J 14:2790–2795. https://doi.org/10.1002/asia.201900791

    Article  CAS  PubMed  Google Scholar 

  7. Su JW, Xia GL, Li R, Yang Y, Chen JT, Shi RH, Jiang P, Chen QW (2016) Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. J Mater Chem A 4:9204–9212. https://doi.org/10.1039/c6ta00945j

    Article  CAS  Google Scholar 

  8. Cao LM, Hu YW, Tang SF, Iljin A, Wang JW, Zhang ZM, Lu TB (2018) Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv Sci 5:9. https://doi.org/10.1002/advs.201800949

    Article  CAS  Google Scholar 

  9. Sun W, Wei W, Chen N, Chen LL, Xu Y, Oluigbo CJ, Jiang ZF, Yan ZX, Xie JM (2019) In situ confined vertical growth of a 1D-CuCo2S4 nanoarray on Ni foam covered by a 3D-PANI mesh layer to form a self-supporting hierarchical structure for high-efficiency oxygen evolution catalysis. Nanoscale 11:12326–12336. https://doi.org/10.1039/c9nr02815c

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Zhou Q, Zhu JX, Yan QY, Dou SX, Sun WP (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27:34. https://doi.org/10.1002/adfm.201702317

    Article  CAS  Google Scholar 

  11. Xuan CJ, Wang J, Xia WW, Zhu J, Peng ZK, Xia KD, Xiao WP, Xin HLL, Wang DL (2018) Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction. J Mater Chem A 6:7062–7069. https://doi.org/10.1039/c8ta00410b

    Article  CAS  Google Scholar 

  12. Niu QQ, Bao CC, Cao XW, Liu C, Wang H, Lu WB (2019) Ni-Fe PBA hollow nanocubes as efficient electrode materials for highly sensitive detection of guanine and hydrogen peroxide in human whole saliva. Biosens Bioelectron 141:7. https://doi.org/10.1016/j.bios.2019.111445

    Article  CAS  Google Scholar 

  13. Gao ZQ, Li YY, Zhang CY, Zhang S, Jia YL, Dong YH (2020) An enzyme-free immunosensor for sensitive determination of procalcitonin using NiFe PBA nanocubes@TB as the sensing matrix. Anal Chim Acta 1097:169–175. https://doi.org/10.1016/j.aca.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  14. Wang YQ, Ma JZ, Wang J, Chen S, Wang HS, Zhang JT (2019) Interfacial Scaffolding Preparation of Hierarchical PBA-Based Derivative Electrocatalysts for Efficient Water Splitting. Adv Energy Mater 9:11. https://doi.org/10.1002/aenm.201802939

    Article  CAS  Google Scholar 

  15. Xu XH, Wang T, Su L, Zhang YJ, Dong LJ, Miao XY (2021) In situ synthesis of superhydrophilic amorphous NiFe Prussian blue analogues for the oxygen evolution reaction at a high current density. ACS Sustain Chem Eng 9:5693–5704. https://doi.org/10.1021/acssuschemeng.1c00855

    Article  CAS  Google Scholar 

  16. Guo YJ, Zhang CR, Zhang JH, Dastafkan K, Wang K, Zhao C, Shi ZQ (2021) Metal-organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain Chem Eng 9:2047–2056. https://doi.org/10.1021/acssuschemeng.0c06969

    Article  CAS  Google Scholar 

  17. Lu M, Gao N, Zhang XJ, Wang GS (2019) Reduced graphene oxide decorated with octahedral NiS2/NiS nanocrystals: facile synthesis and tunable high frequency attenuation. RSC Adv 9:5550–5556. https://doi.org/10.1039/c8ra10633a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jung SY, Kang S, Kim KM, Mhin S, Kim JC, Kim SJ, Enkhtuvshin E, Choi S, Han H (2021) Sulfur-incorporated nickel-iron layered double hydroxides for effective oxygen evolution reaction in seawater. Appl Surf Sci 568:8. https://doi.org/10.1016/j.apsusc.2021.150965

    Article  CAS  Google Scholar 

  19. Dutta S, Indra A, Feng Y, Song T, Paik U (2017) Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity. ACS Appl Mater Interfaces 9:33766–33774. https://doi.org/10.1021/acsami.7b07984

    Article  CAS  PubMed  Google Scholar 

  20. Wu YY, Li Y, Lu Z, Xu LL, Wei B (2020) Heterostructural Ni3S2-Fe(5)Ni(4)S(8)hybrids for efficient electrocatalytic oxygen evolution. J Mater Sci 55:15963–15974. https://doi.org/10.1007/s10853-020-05149-6

    Article  CAS  Google Scholar 

  21. Xiao H, Shin H, Goddard WA (2018) Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc Natl Acad Sci U S A 115:5872–5877. https://doi.org/10.1073/pnas.1722034115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Application Foundation Project of Science and Technology Department of Sichuan Province (No. 2021YJ0323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5654 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., He, Q., Zhu, T. et al. Sulfurized NiFe bimetallic electrocatalysts derived from Prussian blue analogues for oxygen evolution reactions. Reac Kinet Mech Cat 135, 3275–3284 (2022). https://doi.org/10.1007/s11144-022-02294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02294-8

Keywords

Navigation