Skip to main content
Log in

Removal of arsenite using conventional and enhanced electrocoagulation with aeration and hydrogen peroxide up to drinking water quality standards

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study used conventional and enhanced electrocoagulation with aeration and H2O2 to remove arsenite from water. Electrocoagulation and enhanced electrocoagulation, with aeration and H2O2, can remove arsenite with concentrations of 1, 2, and 10 mg/L to meet drinking water standards. The removal of arsenic in electrocoagulation (R2: 0.99) and enhanced electrocoagulation with aeration (R2: 0.99) and H2O2 (R2: 0.0.99) follow the pseudo-first-order kinetics. The data on the adsorption of arsenic to aluminum produced in EC (R2: 0.90) and enhanced electrocoagulation with aeration (R2: 0.90) and H2O2 (R2: 0.81) is consistent with the Langmuir isotherm. The enhanced electrocoagulation with aeration and H2O2 had a higher ability to remove arsenic than in previous studies. For the first time, using enhanced electrocoagulation with H2O2, arsenic-contaminated water at a 10 mg/L concentration was treated to the drinking water standard. Therefore, preparing drinking water from arsenic-contaminated water sources can be an efficient process up to 10 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng Z, Fu F, Dionysiou DD, Tang B (2016) Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles. Water Res 96:22–31. https://doi.org/10.1016/j.watres.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  2. Fazal MA, Kawachi T, Ichion E (2001) Extent and severity of groundwater arsenic contamination in Bangladesh. Water Int 26(3):370–379. https://doi.org/10.1080/02508060108686929

    Article  CAS  Google Scholar 

  3. Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water—problems and solutions. Water Sci Technol 40(2):69–76. https://doi.org/10.1016/S0273-1223(99)00432-1

    Article  CAS  Google Scholar 

  4. Smedley PL, Kinniburgh DG (2001) Source and behaviour of arsenic in natural waters. United Nations synthesis report on arsenic in drinking water. World Health Organization, Geneva

    Google Scholar 

  5. Jiang J-Q (2001) Removing arsenic from groundwater for the developing world—a review. Water Sci Technol 44(6):89–98. https://doi.org/10.2166/wst.2001.0348

    Article  CAS  PubMed  Google Scholar 

  6. WHO, Staff WHO (2004) Guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  7. Waste USEPAOoS, Response E (2002) Arsenic treatment technologies for soil, waste, and water. DIANE Publishing, Collingdale

    Google Scholar 

  8. Song P, Yang Z, Zeng G, Yang X, Xu H, Wang L et al (2017) Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review. Chem Eng J 317:707–725. https://doi.org/10.1016/j.cej.2017.02.086

    Article  CAS  Google Scholar 

  9. Aghapour AA, Dolati M, Khorsandi H (2022) Boron removal using enhanced electrocoagulation (EEC) with hydrogen peroxide under natural conditions to prepare drinking water. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-022-02246-2

    Article  Google Scholar 

  10. Dolati M, Aghapour AA, Khorsandi H, Karimzade S (2017) Boron removal from aqueous solutions by electrocoagulation at low concentrations. J Environ Chem Eng 5(5):5150–5156. https://doi.org/10.1016/j.jece.2017.09.055

    Article  CAS  Google Scholar 

  11. Sahu O, Mazumdar B, Chaudhari PK (2014) Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res 21(4):2397–2413. https://doi.org/10.1007/s11356-013-2208-6

    Article  CAS  Google Scholar 

  12. Eyvaz M, Kirlaroglu M, Aktas TS, Yuksel E (2009) The effects of alternating current electrocoagulation on dye removal from aqueous solutions. Chem Eng J 153(1):16–22. https://doi.org/10.1016/j.cej.2009.05.028

    Article  CAS  Google Scholar 

  13. Kobya M, Can OT, Bayramoglu M (2003) Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J Hazard Mater 100(1):163–178. https://doi.org/10.1016/S0304-3894(03)00102-X

    Article  CAS  PubMed  Google Scholar 

  14. Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M (2009) Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chem Eng J 149(1):207–214. https://doi.org/10.1016/j.cej.2008.10.018

    Article  CAS  Google Scholar 

  15. Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localised water treatment technology. Chemosphere 59(3):355–367. https://doi.org/10.1016/j.chemosphere.2004.10.023

    Article  CAS  PubMed  Google Scholar 

  16. Gökkuş Ö, Çoşkun F, Kocaoğlu M, Yıldız YŞ (2014) Determination of optimum conditions for color and COD removal of reactive blue 19 by Fenton oxidation process. Desalin Water Treat 52(31–33):6156–6165. https://doi.org/10.1080/19443994.2013.812523

    Article  CAS  Google Scholar 

  17. Yıldıza N, Gökkuşa Ö, Koparalb AS, Yıldıza YŞ (2019) Peroxi-coagulation process: a comparison of the effect of oxygen level on color and TOC removals. Desalin Water Treat 1(9):106

    Article  Google Scholar 

  18. Lakshmanan D, Clifford DA, Samanta G (2010) Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res 44(19):5641–5652. https://doi.org/10.1016/j.watres.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  19. Ratna Kumar P, Chaudhari S, Khilar KC, Mahajan SP (2004) Removal of arsenic from water by electrocoagulation. Chemosphere 55(9):1245–1252. https://doi.org/10.1016/j.chemosphere.2003.12.025

    Article  CAS  PubMed  Google Scholar 

  20. Wan W, Pepping TJ, Banerji T, Chaudhari S, Giammar DE (2011) Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res 45(1):384–392. https://doi.org/10.1016/j.watres.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  21. Song P, Yang Z, Xu H, Huang J, Yang X, Yue F et al (2016) Arsenic removal from contaminated drinking water by electrocoagulation using hybrid Fe–Al electrodes: response surface methodology and mechanism study. Desalin Water Treat 57(10):4548–4556. https://doi.org/10.1080/19443994.2014.992973

    Article  CAS  Google Scholar 

  22. Bandaru SRS, van Genuchten CM, Kumar A, Glade S, Hernandez D, Nahata M et al (2020) Rapid and efficient arsenic removal by iron electrocoagulation enabled with in situ generation of hydrogen peroxide. Environ Sci Technol 54(10):6094–6103. https://doi.org/10.1021/acs.est.0c00012

    Article  CAS  PubMed  Google Scholar 

  23. Ghanizadeh G, Safavi SN, Akbari H, Hazrati S (2016) Elimination of arsenic (III) from urban drinking water by electrocoagulation process. Mil Med 18(2):197–206

    Google Scholar 

  24. Goren AY, Kobya M (2021) Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. Chemosphere 263:128253. https://doi.org/10.1016/j.chemosphere.2020.128253

    Article  CAS  PubMed  Google Scholar 

  25. Qian A, Yuan S, Zhang P, Tong M (2015) A new mechanism in electrochemical process for arsenic oxidation: production of H2O2 from anodic O2 reduction on the cathode under automatically developed alkaline conditions. Environ Sci Technol 49(9):5689–5696. https://doi.org/10.1021/acs.est.5b00808

    Article  CAS  PubMed  Google Scholar 

  26. Singare PU, Trivedi MP, Mishra RM (2012) Sediment heavy metal contaminants in Vasai Creek of Mumbai: pollution impacts. Am J Chem 2(3):171–180

    Article  CAS  Google Scholar 

  27. Gökkuş Ö, Yıldız YŞ (2015) Application of electrocoagulation for treatment of medical waste sterilization plant wastewater and optimization of the experimental conditions. Clean Technol Environ Policy 17(6):1717–1725. https://doi.org/10.1007/s10098-014-0897-2

    Article  CAS  Google Scholar 

  28. Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C (2009) Removal of arsenic from aqueous solution using electrocoagulation. J Hazard Mater 167(1):966–969. https://doi.org/10.1016/j.jhazmat.2009.01.081

    Article  CAS  PubMed  Google Scholar 

  29. Lacasa E, Cañizares P, Sáez C, Fernández FJ, Rodrigo MA (2011) Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Sep Purif Technol 79(1):15–19. https://doi.org/10.1016/j.seppur.2011.03.005

    Article  CAS  Google Scholar 

  30. Song P, Yang Z, Xu H, Huang J, Yang X, Wang L (2014) Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe–Al electrodes. Ind Eng Chem Res 53(33):12911–12919. https://doi.org/10.1021/ie501727a

    Article  CAS  Google Scholar 

  31. Aghapour AA, Khorsandi H, Dehghani A, Karimzade S (2018) Preparation and characterization and application of activated alumina (AA) from alum sludge for the adsorption of fluoride from aqueous solutions: new approach to alum sludge recycling. Water Supply 18(5):1825–1831. https://doi.org/10.2166/ws.2018.006

    Article  CAS  Google Scholar 

  32. Hu C, Wang S, Sun J, Liu H, Qu J (2016) An effective method for improving electrocoagulation process: optimization of Al13 polymer formation. Colloids Surf A 489:234–240. https://doi.org/10.1016/j.colsurfa.2015.10.063

    Article  CAS  Google Scholar 

  33. Cerqueira AA, da Costa Marques MR (2012) Electrolytic treatment of wastewater in the oil industry. New technologies in the oil and gas industry. IntechOpen, London, pp 3–28

    Google Scholar 

  34. Jiang J-Q, Xu Y, Quill K, Simon J, Shettle K (2006) Mechanisms of boron removal with electrocoagulation. Environ Chem 3(5):350–354

    Article  CAS  Google Scholar 

  35. Gökkuș Ö, Yıldız Y (2014) Investigation of the effect of process parameters on the coagulation-flocculation treatment of textile wastewater using the Taguchi experimental method. Fresenius Environ Bull 23(2):463–470

    Google Scholar 

  36. Murthy ZVP, Parmar S (2011) Removal of strontium by electrocoagulation using stainless steel and aluminum electrodes. Desalination 282:63–67. https://doi.org/10.1016/j.desal.2011.08.058

    Article  CAS  Google Scholar 

  37. Modirshahla N, Behnajady MA, Kooshaiian S (2007) Investigation of the effect of different electrode connections on the removal efficiency of tartrazine from aqueous solutions by electrocoagulation. Dyes Pigm 74(2):249–257. https://doi.org/10.1016/j.dyepig.2006.02.006

    Article  CAS  Google Scholar 

  38. Kobya M, Gebologlu U, Ulu F, Oncel S, Demirbas E (2011) Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochim Acta 56(14):5060–5070. https://doi.org/10.1016/j.electacta.2011.03.086

    Article  CAS  Google Scholar 

  39. Hansen HK, Nuñez P, Raboy D, Schippacasse I, Grandon R (2007) Electrocoagulation in wastewater containing arsenic: comparing different process designs. Electrochim Acta 52(10):3464–3470. https://doi.org/10.1016/j.electacta.2006.01.090

    Article  CAS  Google Scholar 

  40. Gomes JAG, Daida P, Kesmez M, Weir M, Moreno H, Parga JR et al (2007) Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products. J Hazard Mater 139(2):220–231. https://doi.org/10.1016/j.jhazmat.2005.11.108

    Article  CAS  PubMed  Google Scholar 

  41. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. J Appl Geochem 17(5):517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  42. Zhang S, Zhang J, Wang W, Li F, Cheng X (2013) Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar modules. Sol Energy Mater Sol Cells 117:73–80. https://doi.org/10.1016/j.solmat.2013.05.027

    Article  CAS  Google Scholar 

  43. Omwene PI, Çelen M, Öncel MS, Kobya M (2019) Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes. Process Saf Environ Prot 121:20–31. https://doi.org/10.1016/j.psep.2018.10.003

    Article  CAS  Google Scholar 

  44. Parga JR, Cocke DL, Valenzuela JL, Gomes JA, Kesmez M, Irwin G et al (2005) Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México. J Hazard Mater 124(1):247–254. https://doi.org/10.1016/j.jhazmat.2005.05.017

    Article  CAS  PubMed  Google Scholar 

  45. Barrera-Díaz C, Frontana-Uribe B, Bilyeu B (2014) Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere 105:160–164. https://doi.org/10.1016/j.chemosphere.2014.01.026

    Article  CAS  PubMed  Google Scholar 

  46. Qiang Z, Chang J-H, Huang C-P (2002) Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res 36(1):85–94. https://doi.org/10.1016/S0043-1354(01)00235-4

    Article  CAS  PubMed  Google Scholar 

  47. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a part of the results of a master's thesis in Environmental Health Engineering. We would like to express our gratitude to Urmia University of Medical Sciences that financed the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmad Aghapour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghapour, A.A., Ebrahimi, I., bargeshadi, R. et al. Removal of arsenite using conventional and enhanced electrocoagulation with aeration and hydrogen peroxide up to drinking water quality standards. Reac Kinet Mech Cat 135, 2681–2696 (2022). https://doi.org/10.1007/s11144-022-02278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02278-8

Keywords

Navigation