Skip to main content
Log in

MnOx effect on the performance of Cu-based catalysts in ethynylation of formaldehyde for 1,4-butynediol synthesis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A Cu-based catalyst has been widely used in ethynylation of formaldehyde for synthesis of 1,4-butynediol. Herein, bismuth, magnesium, and manganese species were separately doped into Cu-based catalysts by a co-precipitation method and applied in ethynylation reaction. All catalysts were characterized through X-ray diffraction (XRD), Transmission electron microscope (TEM), H2 temperature-programmed reduction (H2-TPR), scanning electron microscopy (SEM) and elements mapping, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results show that Mn-doped Cu-based catalysts exhibit the best yield of 1,4-butynediol (65%). It is mainly due to CuO in CuO/MnOx catalysts with smaller particle size, better dispersibility and the electronic synergy between copper and manganese species. Moreover, CuO/MnOx-15 catalysts prepared by optimized conditions can further improve the yield and selectivity of 1,4-butynediol to 76% and 96% and remain selectivity of 1,4-butynediol unchanged in about 50 h, which is higher than that of the commercial catalyst (yield of 62%, selectivity of 90%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tapin B, Khanh Ly B, Canaff C, Epron F, Pinel C, Besson M, Especel C (2020) Mater Chem Phys 252:123225

    Article  CAS  Google Scholar 

  2. Lange J, Wadman SH (2020) Chemsuschem 13(19):5329–5337

    Article  CAS  PubMed  Google Scholar 

  3. Bhanushali JT, Prasad D, Patil KN, Reddy KS, Kainthla I, Rao KSR, Jadhav AH, Nagaraja BM (2020) Catal Commun 143:106049

    Article  CAS  Google Scholar 

  4. Lee Y, Kim YT, Kwon EE, Lee J (2020) Environ Res 184:109325

    Article  CAS  PubMed  Google Scholar 

  5. Ge YY, Jia ZQ, Li HT, Gao PF, Zhang Y, Zhao LL, Zhao YX (2014) Reac Kinet Mech Cat 112(2):467–475

    Article  CAS  Google Scholar 

  6. Zhang Q, Zhang Y, Li HT, Gao CG, Zhao YX (2013) Appl Catal A 466:233–239

    Article  CAS  Google Scholar 

  7. Tanielyan S, Schmidt S, Marin N, Alvez G, Augustine R (2010) Top Catal 53(15–18):1145–1149

    Article  CAS  Google Scholar 

  8. Muposhi A, Mpinganjira M, Wait M (2021) Waste Manag Res 00:1–14

    Google Scholar 

  9. Reppe W, Steinhofer A, Spaenig H (1942) Patent US 2300969

  10. Wang JJ, Zhang HX, Li HT, Ma ZQ, Wang ZP, Guo JY, Zhao YX (2015) Ind Catal 23(06):455–458

    CAS  Google Scholar 

  11. Yang GH, Yu YM, Tahir MU, Ahmad S, Su XT, Xie YH, Wang JD (2019) Reac Kinet Mech Cat 127(1):425–436

    Article  CAS  Google Scholar 

  12. Yang GH, Xu YB, Su XT, Xie YH, Yang C, Dong ZJ, Wang JD (2014) Ceram Int 40(3):3969–3973

    Article  CAS  Google Scholar 

  13. Wang ZP, Ban LJ, Meng PF, Li HT, Zhao YX (2019) Nanomaterials 9(8):1137

    Article  CAS  PubMed Central  Google Scholar 

  14. Liu SF, Peng WC, Zhang JS, Tong YB, Yuan J, Qi XX, Yan XR, Sun DK, Dai B (2018) Energy Source Part A 40(19):2327–2333

    Article  CAS  Google Scholar 

  15. Wang ZP, Ban LJ, Meng PF, Li HT, Zhao YX (2019) Nanomaterials 9(7):1038

    Article  CAS  PubMed Central  Google Scholar 

  16. Li HT, Ban LJ, Niu ZZ, Huang X, Meng PF, Han XD, Zhang Y, Zhang HX, Zhao YX (2019) Nanomaterials 9(9):1301

    Article  CAS  PubMed Central  Google Scholar 

  17. Gao J, Yang GF, Li HT, Dong M, Wang ZP, Li ZK (2019) Processes 7(4):198

    Article  CAS  Google Scholar 

  18. Zhang C, Xie AJ, Zhang WQ, Chang JN, Liu CY, Gu LY, Duo XX, Pan F, Luo SP (2021) J Energy Storage 34:102181

    Article  Google Scholar 

  19. Ye ZP, Giraudon J-M, Nuns N, Abdallah G, Addad A, Morent R, Geyter ND, Lamonier J-F (2021) Appl Surf Sci 547:147993

    Article  CAS  Google Scholar 

  20. Jiang BQ, Zhao S, Wang YL, Wenren YS, Zhu ZC, Harding J, Zhang XL, Tu X, Zhang XM (2021) Appl Catal B 286:119886

    Article  CAS  Google Scholar 

  21. Rokicinska A, Majerska P, Drozdek M, Jarczewski S, Valentin L, Chen JH, Slabon A, Dzwigaj S, Kustrowski P (2021) Appl Surf Sci 546:149148

    Article  CAS  Google Scholar 

  22. Dharmalingam K, Bordoloi D, Kunnumakkara AB, Anandalakshmi R (2020) J Appl Polym Sci 137(40):49216

    Article  CAS  Google Scholar 

  23. Yan XM, Ji QJ, Wang C, Xu JX, Wang L (2021) J Colloid Interface Sci 587:820–830

    Article  CAS  PubMed  Google Scholar 

  24. Chen C, Zhang XW, Jiang TJ, Li M, Peng Y, Liu XD, Ye J, Hua YL (2021) J Environ Chem Eng 9(1):104706

    Article  CAS  Google Scholar 

  25. Lou Y, Wang L, Zhao ZY, Zhang YH, Zhang ZG, Lu GZ, Guo Y, Guo YL (2014) Appl Catal B 146:43–49

    Article  CAS  Google Scholar 

  26. Liu X, Liu JQ, Chen JY, Zhong FC (2021) Chemosphere 284:131299

    Article  CAS  PubMed  Google Scholar 

  27. He Z, Lin HQ, He P, Yuan YZ (2011) J Catal 277:54–63

    Article  CAS  Google Scholar 

  28. Agrell J, Brigersson H, Boutonnet M, Melian-Cabreraet I, Navarro RM, Fierro JLG (2003) J Catal 219:389–403

    Article  CAS  Google Scholar 

  29. Batra AK, Krishna A, Bhat K, Aggarwal MD, Francis PJ (2015) Am J Mater Sci 5(3):36–38

    Google Scholar 

  30. Yuvaraj S, Karthikeyan K, Kalpana D, Lee YS, Selvan RK (2016) J Colloid Interface Sci 469:47–56

    Article  CAS  PubMed  Google Scholar 

  31. Liu CY, Feng XL, Li RY, Liu DP, Sheng GP, Luo LW, Liu YQ (2021) Contemp Chem Ind 50(1):76–79

    Google Scholar 

  32. Asri NS, Tetuko AP, Esmawan A, Addin M, Setiadi EA, Putri WBK, Ginting M, Sebayang P (2021) Nano-Structures Nano-Objects 25:100654

    Article  CAS  Google Scholar 

  33. Yan DM, Cai WR, Ying GQ, Tang BT, Zhang SF (2021) Fine Chem 38(4):729–735

    Google Scholar 

  34. Ardelean I, Cora S, Rusu D (2008) Physica B 403(19–20):3682–3685

    Article  CAS  Google Scholar 

  35. Manjceevan A, Sulaimalebbe N, Somapala T (2021) J Mol Struct 1235:130205

    Article  CAS  Google Scholar 

  36. Alfalah MGK, Kamberli E, Abbar AH, Kandemirli F, Saracoglu M (2020) Surf Interfaces 21:100760

    Article  CAS  Google Scholar 

  37. Djebian R, Boudjema B, Kabir A, Sedrati C (2020) Solid State Sci 101:106147

    Article  CAS  Google Scholar 

  38. Bayansal F, Şahin O, Çetinkara HA (2020) Thin Solid Films 697:137839

    Article  CAS  Google Scholar 

  39. Tiscornia IS, Lacoste AM, Gomez LE, Boix AV (2020) Int J Hydrog Energy 45(11):6636–6650

    Article  CAS  Google Scholar 

  40. Singhal A, Pai MR, Rao R, Pillai KT, Lieberwirth I, Tyagi AK (2013) Eur J Inorg Chem 14:2640–2651

    Article  CAS  Google Scholar 

  41. Li HT, Ban LJ, Wang ZP, Meng PF, Zhang Y, Wu RF, Zhao YX (2019) Nanomaterials 9:842

    Article  CAS  PubMed Central  Google Scholar 

  42. Debbichi L, de Marco Lucas MC, Pierson JF, Kruger P (2012) J Phys Chem C 116(18):10232–10237

    Article  CAS  Google Scholar 

  43. Zhu YB, Tang GX, Wang T, Feng PZ, Tao XY (2016) J Inorg Chem 32(8):1353–1357

    CAS  Google Scholar 

  44. Li J, Zhu PF, Zhou RX (2011) J Power Sources 196(22):9590–9598

    Article  CAS  Google Scholar 

  45. Gui K (2019) Master’s thesis (China), Beijing University of Chemical Technology

  46. Hu J, Li YY, Zhen YP, Chen MS, Wan HL (2021) Chin J Catal 42(3):367–375

    Article  CAS  Google Scholar 

  47. Ban LJ, Li HT, Zhang Y, Wu RF, Huang X, Zhao JH, Zhao YX (2021) J Phys Chem C 125(30):16536–16549

    Article  CAS  Google Scholar 

  48. Allen GC, Harris SJ, Jutson JA (1989) Appl Surf Sci 37(1):111–134

    Article  CAS  Google Scholar 

  49. Papavasiliou J, Avgouropoulos G, Ioannides T (2007) J Catal 251(1):7–20

    Article  CAS  Google Scholar 

  50. Porta P, Moretti G, Musicanti M, Nardella A (1993) Solid State Ionics 63(5):257–267

    Article  Google Scholar 

  51. Xiong SC, Huang N, Peng Y, Chen JJ, Li JH (2021) J Hazard Mater 415:125637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2019D01C046), the Doctoral Scientific Research Foundation of Xinjiang University, China (BS160226), and the State Key Laboratory of Fine Chemicals, Dalian University of Technology (KF 2103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1078 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Gao, F., Yang, L. et al. MnOx effect on the performance of Cu-based catalysts in ethynylation of formaldehyde for 1,4-butynediol synthesis. Reac Kinet Mech Cat 135, 2611–2627 (2022). https://doi.org/10.1007/s11144-022-02265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02265-z

Keywords

Navigation