Skip to main content
Log in

Performance and kinetics of silicon-bridged diphosphines/CrCl3(C4H8O)3/modified methylaluminoxane catalyzed ethylene tri-/tetramerization in a continuous stirred tank reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, PNSiP, a silicon-bridged diphosphines ligand, was coupled with CrCl3(THF)3 and modified methylaluminoxane (MMAO) to form a catalytic system. The continuous ethylene tri-/tetramerization catalytic performance of the PNSiP/CrCl3(THF)3/MMAO system was evaluated with a self-designed continuous stirred tank reactor (CSTR). The products have more than 88.00% selectivity for 1-hexene and 1-octene. Cyclic-C6 by-products (methyl-cyclopentane and methylene-cyclopentane) have a selectivity of less than 1.00%. The optimal process parameters for continuous ethylene tri-/tetramerization in CSTR were 60 °C reaction temperature, 5.0 MPa ethylene pressure, 1.2 mL/min catalyst feed flow rate, and 200 r/min impeller speed. The catalytic activity of the system can reach 7.26 × 105 g(products) g(Cr)−1 h−1. The mass fraction of polyethylene is less than 0.15% after 30 h. Finally, a kinetic model was established to describe the effects of chromium concentration and ethylene pressure on the continuous reaction of PNSiP/CrCl3(THF)3/MMAO catalyzed ethylene tri-/tetramerization in CSTR under the optimum conditions. This paper provides data basis and preliminary preparation for the continuous industrial production of linear α-olefins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dixon JT, Green MJ, Hess FM, Morgan DH (2004) J Organomet Chem 689:3641–3668

    Article  CAS  Google Scholar 

  2. Kumar S, Dholakiya BZ, Jangir R (2021) J Organomet Chem 953:122066

    Article  CAS  Google Scholar 

  3. Britovsek GJP, Malinowski R, McGuinness DS, Nobbs JD, Tomov AK, Wadsley AW, Young CT (2015) ACS Catal 5:6922–6925

    Article  CAS  Google Scholar 

  4. Sheng D, Zhang Y, Wang Z, Xu G, Song QX, Shan DM, Hou HQ (2021) J Organomet Chem 956:122128

    Article  CAS  Google Scholar 

  5. Kim Y, Jung U, Song D, Im HB, Park JC, Youn MH, Jeong HD, Rhim GB, Chun DH, Lee DW, Lee KB, Koo KY (2020) Fuel 281:118791

    Article  CAS  Google Scholar 

  6. Sydora OL (2019) Organometallics 38:997–1010

    Article  CAS  Google Scholar 

  7. Lallemand M, Finiels A, Fajula F, Hulea V (2011) Chem Eng J 172:1078–1082

    Article  CAS  Google Scholar 

  8. Xu Z, Chada JP, Xu L, Zhao D, Rosenfeld DC, Rogers JL, Hermans I, Mavrikakis M, Huber GW (2018) ACS Catal 8:2488

    Article  CAS  Google Scholar 

  9. Xu Z, Zhao D, Chada JP, Rosenfeld DC, Rogers JL, Hermans I, Huber GW (2017) J Catal 354:213–222

    Article  CAS  Google Scholar 

  10. Finiels A, Fajula F, Hulea V (2014) Catal Sci Technol 4:2412–2426

    Article  CAS  Google Scholar 

  11. Kuhlmann S, Paetz C, Hägele C, Blann K, Walsh R, Dixon JT, Scholz J, Haumann M, Wasserscheid PJ (2009) J Catal 262:83–91

    Article  CAS  Google Scholar 

  12. Alam F, Zhang L, Zhai Y, Wang J, Tang H, Chen Y, Jiang T (2019) J Catal 378:312–319

    Article  CAS  Google Scholar 

  13. Alam F, Wang J, Dong C, Chang Q, Zhang L, Zhang Q, Chen Y, Jiang T (2020) J Catal 392:278–286

    Article  CAS  Google Scholar 

  14. Alam F, Zhang L, Wei W, Wang J, Chen Y, Dong C, Jiang T (2018) ACS Catal 8:10836–10845

    Article  CAS  Google Scholar 

  15. Zhang L, Wei W, Alam F, Chen Y, Jiang T (2017) Catal Sci Technol 7:5011–5018

    Article  CAS  Google Scholar 

  16. Jiang T, Ning Y, Zhang B, Li J, Wang G, Yi J, Huang Q (2006) J Mol Catal A 259:161–165

    Article  CAS  Google Scholar 

  17. Wang J, Shang Y, Zhang N, Li C, Shi W (2018) Russ J Phys Chem 92:2618–2627

    Article  Google Scholar 

  18. Do LH, Labinger JA, Bercaw JE (2013) ACS Catal 3:2582–2585

    Article  CAS  Google Scholar 

  19. Zhang J, Alam F, Fan H, Ma J, Jiang T (2022) Appl Organomet Chem 36:e6454

    CAS  Google Scholar 

  20. Mohammed AA, Fateen S, Ahmed TS, Moustafa TM (2014) Appl Petrochem Res 4:287–295

    Article  CAS  Google Scholar 

  21. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  22. Walsh R, Morgan DH, Bollmann A, Dixon JT (2006) Appl Catal A 306:184–191

    Article  CAS  Google Scholar 

  23. Kuhlmann S, Dixon JT, Haumann M, Morgan DH, Ofili J, Spuhl O, Taccardi N, Wassercheid P (2006) Adv Synth Catal 348:1200–1206

    Article  CAS  Google Scholar 

  24. Tang S, Liu Z, Yan X, Li N, Cheng R, He X, Liu B (2014) Appl Catal A 481:39–48

    Article  CAS  Google Scholar 

  25. Hagen H (2006) Ind Eng Chem Res 45:3544–3551

    Article  CAS  Google Scholar 

  26. Jan O, Song K, Dichiara A, Fernando LP (2018) Ind Eng Chem Res 57:10241–10250

    Article  CAS  Google Scholar 

  27. Kishor R, Padmanabhan S (2011) R Sarma K, Patel V, Sharma S, Parimal AP. J Appl Poly Sci 122:2646–2652

    Article  CAS  Google Scholar 

  28. Shaharun MS, Mukhtar H, Dutta BK (2008) Chem Eng Sci 63:3024–3035

    Article  CAS  Google Scholar 

  29. Coughlin RW, Pollak FA (1969) AIChE J 15:208–214

    Article  CAS  Google Scholar 

  30. Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) J Phys Chem C 112:17814–17819

    Article  CAS  Google Scholar 

  31. Kuhlmann S (2006) Universitat Erlangen-Nurnberg

  32. Chen G, Liu H, Fadaeerayeni S, Shan J, Xing A, Cheng J, Wang H, Xiang Y (2020) Catal Sci Technol 10:4019–4029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 22071178, 22050410271), the Natural Science Foundation of Hebei Province of China (Grant No. B2019109045), China Petroleum Science and technology program (Grant No. 2020B-2512) and PetroChina Innovation Foundation (Grant No. 2020D-5007-0405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Y., Ma, J. et al. Performance and kinetics of silicon-bridged diphosphines/CrCl3(C4H8O)3/modified methylaluminoxane catalyzed ethylene tri-/tetramerization in a continuous stirred tank reactor. Reac Kinet Mech Cat 135, 2441–2455 (2022). https://doi.org/10.1007/s11144-022-02255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02255-1

Keywords

Navigation