Skip to main content
Log in

Improving the photocatalytic properties of tin dioxide doped with titanium and copper in the degradation of rhodamine B and safranin T

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The study of the changes in structural, electronic and photocatalytic properties of tin dioxide doped with titanium and copper by ultrasonic and mechanochemical treatments of wet gel, dried xerogel and powder has been carried out. The doped samples were characterized using XRD with a full profile analysis of the diffraction patterns, nitrogen adsorption–desorption, TEM, as well as electronic and photoluminescence spectroscopy. Ti-doped sample calcined at 550 ºC has the structure of a solid solution based on SnO2, while copper is not embedded into SnO2 lattice even after calcinations. As a result of doping, more open meso-macroporous structure accessible for dyes molecules (Rhodamine B and Safranin T) has been formed. Also, narrowing the band gap Eg and increase in the absorption of visible light has been observed. The doped samples have quite high photocatalytic activity in the process of degradation of organic pollutants under visible irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samsonenko M, Zakutevskyy O, Khalameida S, Charmas B, Skubiszewska-Zieba J (2019) Influence of mechanochemical and microwave modification on ion-exchange properties of tin dioxide with respect to uranyl ions. Adsorption 25:451–457. https://doi.org/10.1007/s10450-019-00036-2

    Article  CAS  Google Scholar 

  2. Li G, Zhang X, Kawi S (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sens Actuators B Chem 60:64–70. https://doi.org/10.1016/s0925-4005(99)00245-2

    Article  CAS  Google Scholar 

  3. Baena JPC, Agrios AG (2014) Antimony-doped tin oxide aerogels as porous electron collectors for dye-sensitized solar cells. J Phys Chem C 118:17028–17035. https://doi.org/10.1021/jp500542v

    Article  CAS  Google Scholar 

  4. Al-Hamdi AM, Rinner U, Sillanpää M (2017) Tin dioxide as a photocatalyst for water treatment: a review. Process Saf Environ Prot 107:190–205. https://doi.org/10.1016/j.psep.2017.01.022

    Article  CAS  Google Scholar 

  5. Hoffmann MR, Martin ST, Choi W, Bahneman DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  6. Zaleska A (2008) Doped–TiO2: a review. Recent Patents Eng 2:157–164. https://doi.org/10.2174/187221208786306289

    Article  CAS  Google Scholar 

  7. Ibrahim NS, Leaw WL, Mohamad D, Alias SH, Nur H (2020) A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production. Int J Hydrogen Energy 45:28553–28565. https://doi.org/10.1016/j.ijhydene.2020.07.233

    Article  CAS  Google Scholar 

  8. Chen D, Huang S, Huang R, Zhang Q, Le TT, Cheng E, Hu Z, Chen Z (2018) Highlights on advances in SnO2 quantum dots: insights into synthesis strategies, modifications and applications. Mater Res Lett 6:462–488. https://doi.org/10.1080/21663831.2018.1482837

    Article  CAS  Google Scholar 

  9. Ran L, Zhao D, Gao X, Yin L (2015) Highly crystalline Ti-doped SnO2 hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes. Cryst Eng Comm 17:4225–4237. https://doi.org/10.1039/c5ce00184f

    Article  CAS  Google Scholar 

  10. Toloman D, Pana O, Stefan M, Popa A, Leostean C, Macavei S, Silipas D, Perhaita I, Lazar MD, Barbu-Tudoran L (2019) Photocatalytic activity of SnO2-TiO2 composite nanoparticles modified with PVP. J Colloid Interface Sci 542:296–307. https://doi.org/10.1016/j.jcis.2019.02.026

    Article  CAS  PubMed  Google Scholar 

  11. Zeng W, Li Y, Miao B, Lin L, Wang Z (2014) Recognition of carbon monoxide with SnO2/Ti thick-film sensor and its gas-sensing mechanism. Sens Actuators B Chem 191:1–8. https://doi.org/10.1016/j.snb.2013.09.092

    Article  CAS  Google Scholar 

  12. Mishra RK, Kushwaha A, Sahay PP (2014) Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv 4:3904–3912. https://doi.org/10.1039/c3ra43709d

    Article  CAS  Google Scholar 

  13. Morlando A, Cardillo D, Devers T, Konstantinov K (2016) Titanium doped tin dioxide as potential UV filter with low photocatalytic activity for sunscreen products. Mater Lett 171:289–292. https://doi.org/10.1016/j.matlet.2016.02.094

    Article  CAS  Google Scholar 

  14. Letifi H, Dridi D, Litaiem Y, Ammar S, Dimassi W, Chtourou R (2021) High efficient and cost effective titanium doped tin dioxide based photocatalysts synthesized via co-precipitation approach. Catalysts 11:803. https://doi.org/10.3390/catal11070803

    Article  CAS  Google Scholar 

  15. Sathishkumar M, Geethalakshmi S (2020) Enhanced photocatalytic and antibacterial activity of Cu:SnO2 nanoparticles synthesized by microwave assisted method. Mater Today Proc 20:54. https://doi.org/10.1016/j.matpr.2019.08.246

    Article  CAS  Google Scholar 

  16. Vadivel S, Rajarajan G (2015) Influence of Cu doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J Mater Sci Mater Electron 26:5863–5870. https://doi.org/10.1007/s10854-015-3154-5

    Article  CAS  Google Scholar 

  17. Parthibavarman M, Sathishkumar S, Prabhakaran S, Jayashree M, Boopathi R (2018) High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J Iranian Chem Soc 15:2789. https://doi.org/10.1007/s13738-018-1466-0

    Article  CAS  Google Scholar 

  18. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, Lett JA, Selvin R (2019) Cu-Doped SnO2 nanoparticles: synthesis and properties. J Nanosci Nanotechnol 19:7139–7148. https://doi.org/10.1166/jnn.2019.16666

    Article  CAS  PubMed  Google Scholar 

  19. Lalena JN, Cleary DA (2010) Principles of inorganic materials design. Wiley, New Jersy, p 584

    Book  Google Scholar 

  20. Zakrzewska K, Radecka M (2012) TiO2-SnO2 composites and solid solutions for chemical nanosensors. Proc Eng 47:1077–1080. https://doi.org/10.1016/j.proeng.2012.09.337

    Article  CAS  Google Scholar 

  21. Hassan SM, Ahmed AI, Mannaa MA (2019) Preparation and characterization of SnO2 doped TiO2 nanoparticles: effect of phase changes on the photocatalytic and catalytic activity. J Sci Adv Mater Devices 4:400–412. https://doi.org/10.1016/j.jsamd.2019.06.004

    Article  Google Scholar 

  22. Meyer BK, Polity A, Reppin D, Becker M, Hering P, Klar PJ, Ronning C (2012) Binary copper oxide semiconductors: from materials towards devices. Phys Status Solidi B 249:1487–1509. https://doi.org/10.1002/pssb.201248128

    Article  CAS  Google Scholar 

  23. Janczarek M, Zielińska-Jurek A, Markowska I, Hupka J (2014) Transparent thin films of Cu–TiO2 with visible light photocatalytic activity. Photochem Photobiol Sci 14:591–596. https://doi.org/10.1039/c4pp00271g

    Article  Google Scholar 

  24. Xin B, Wang P, Ding D, Liu J, Ren Z, Fu H (2008) Effect of surface species on Cu-TiO2 photocatalytic activity. Appl Surf Sci 254:2569–2574. https://doi.org/10.1016/j.apsusc.2007.09.002

    Article  CAS  Google Scholar 

  25. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction photocatalysts. Adv Mater 29:1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  26. Khalameida SV, Samsonenko MN, Sydorchuk VV, Starchevskyy VL, Zakutevskyy OI, Yu KO (2017) Photocatalytic properties of tin dioxide doped with chromium(III) silver and zinc compounds in the oxidation of organic substrates by the action of visible light. Theor Exp Chem 53:40–46. https://doi.org/10.1007/s11237-017-9499-5

    Article  CAS  Google Scholar 

  27. Sabri NS, Deni MSM, Zakaria A, Talari MK (2012) Effect of Mn doping on structural and optical properties of SnO2 nanoparticles prepared by mechanochemical processing. Phys Proc 25:233–239. https://doi.org/10.1016/j.phpro.2012.03.077

    Article  CAS  Google Scholar 

  28. Zhang X, Yang H (2012) Structural characterization and gas sensing property of Cd-doped SnO2 nanocrystallites synthesized by mechanochemical reaction. Sens Actuators B Chem 173:127–132. https://doi.org/10.1016/j.snb.2012.06.045

    Article  CAS  Google Scholar 

  29. Shifu C, Lei C, Shen G, Gengyu C (2006) The preparation of coupled SnO2/TiO2 photocatalyst by ball milling. Mater Chem Phys 98:116–120. https://doi.org/10.1016/j.matchemphys.2005.08

    Article  Google Scholar 

  30. Hao L, Yan J, Guan S, Cheng L, Zhao Q, Zhu Z, Wang Y, Lu Y, Liu J (2019) Oxygen vacancies in TiO2/SnO coatings prepared by ball milling followed by calcination and their influence on the photocatalytic activity. Appl Surf Sci 466:490–497. https://doi.org/10.1016/j.apsusc.2018.10.071

    Article  CAS  Google Scholar 

  31. Karthik T, Olvera M, Maldonado A, Gómez Pozos H (2016) CO gas sensing properties of pure and Cu-incorporated SnO2 nanoparticles: a study of Cu-induced modifications. Sensors 16:1283. https://doi.org/10.3390/s16081283

    Article  CAS  PubMed Central  Google Scholar 

  32. Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java Program for material analysis using diffraction. IUCr 21:14–15

    Google Scholar 

  33. Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR (2004) Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J Phys Chem B 108:8119–8123. https://doi.org/10.1021/jp036741e

    Article  CAS  Google Scholar 

  34. Goswami YC, Kumar V, Rajaram P, Ganesan V, Malik MA, O’Brien P (2014) Synthesis of SnO2 nanostructures by ultrasonic-assisted sol–gel method. J Sol-Gel Sci Technol 69:617–624. https://doi.org/10.1007/s10971-013-3241-0

    Article  CAS  Google Scholar 

  35. Srinivasan NR, Bandyopadhyaya R (2016) SnxTi1−xO2 solid-solution-nanoparticle embedded mesoporous silica (SBA-15) hybrid as an engineered photocatalyst with enhanced activity. Faraday Discuss 186:353–370. https://doi.org/10.1039/c5fd00126a

    Article  CAS  PubMed  Google Scholar 

  36. Madelung O (1983) Landolt-Börnstein: numerical data and functional relationships in science and technology. Springer, Berlin, pp 17–133

    Google Scholar 

  37. Irani M, Gasem KAM, Dutcher B, Fan M (2016) CO2 capture using nanoporous TiO(OH)2/tetraethylenepentamine. Fuel 183:601–608. https://doi.org/10.1016/j.fuel.2016.06.129

    Article  CAS  Google Scholar 

  38. Dutcher B, Fan M, Leonard B (2011) Use of multifunctional nanoporous TiO(OH)2 for catalytic NaHCO3 decomposition-eventually for Na2CO3/NaHCO3 based CO2 separation technology. Sep Purif Technol 80:364–374. https://doi.org/10.1016/j.seppur.2011.05.022

    Article  CAS  Google Scholar 

  39. Khalameida S, Samsonenko M, Skubiszewska-Zięba J, Zakutevskyy O (2017) Dyes catalytic degradation using modified tin(IV) oxide and hydroxide powders. Adsorpt Sci Technol 35:853. https://doi.org/10.1177/0263617417722251

    Article  CAS  Google Scholar 

  40. Zielińska B, Borowiak-Palen E, Kalenzuk RJ (2008) Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation. J Phys Chem Solids 69:236–242. https://doi.org/10.1016/j.jpcs.2007.09.001

    Article  CAS  Google Scholar 

  41. Fan Y, Chen G, Li D, Luo Y, Lock N, Jensen AP, Mamakhel A, Mi J, Iversen SB, Meng Q, Iversen BB (2012) Highly selective deethylation of rhodamine B on TiO2 prepared in supercritical fluids. Int J Photoenergy. https://doi.org/10.1155/2012/173865

    Article  Google Scholar 

  42. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234. https://doi.org/10.1039/c4cs00126e

    Article  CAS  PubMed  Google Scholar 

  43. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787. https://doi.org/10.1016/j.solmat.2005.11.007

    Article  CAS  Google Scholar 

  44. Wojcieszak D, Kaczmarek D, Domaradzki J, Mazur M (2013) Correlation of photocatalysis and photoluminescence effect in relation to the surface properties of TiO2:Tb thin films. Int J Photoenergy. https://doi.org/10.1155/2013/526140

    Article  Google Scholar 

  45. Singh LP, Luwang MN, Srivastava SK (2014) Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles. New J Chem 38:115–121. https://doi.org/10.1039/C3NJ00759F

    Article  CAS  Google Scholar 

  46. Entradas T, Cabrita J, Dalui S, Nunes MR, Monteiro OC, Silvestre AJ (2014) Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Mater Chem Phys 147:563–571. https://doi.org/10.1016/j.matchemphys.2014.05.032

    Article  CAS  Google Scholar 

  47. Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18. https://doi.org/10.1016/j.cej.2009.02.026

    Article  CAS  Google Scholar 

  48. Sydorchuk V, Poddubnaya O, Tsyba M, Zakutevskyy O, Khalameida S, Puziy A (2019) Activated carbons with adsorbed cations as photocatalysts for pollutants degradation in aqueous medium. Adsorption 25:267–278. https://doi.org/10.1007/s10450-018-00006-0

    Article  CAS  Google Scholar 

  49. Khalameida S, Sydorchuk V, Levytska S, Shcherban N (2020) Physicochemical and photocatalytic properties of tin dioxide supported onto silica gel. J Therm Anal Calorim 140:2131–2142. https://doi.org/10.1007/s10973-019-08896-0

    Article  CAS  Google Scholar 

  50. Crişan M, Mardare D, Ianculescu A, Drăgan N, Niţoi I, Crişan D, Vasile B (2018) Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Appl Surf Sci 455:201–215. https://doi.org/10.1016/j.apsusc.2018.05.124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the framework of the research project of young scientists from the National Academy of Sciences of Ukraine «Alternative methods of doping SnO2-based materials to purification of the water environment from pollutants» (contract N 75-09/03-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svitlana Khalameida.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 680 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalameida, S., Samsonenko, M., Sydorchuk, V. et al. Improving the photocatalytic properties of tin dioxide doped with titanium and copper in the degradation of rhodamine B and safranin T. Reac Kinet Mech Cat 135, 1665–1685 (2022). https://doi.org/10.1007/s11144-022-02206-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02206-w

Keywords

Navigation