Skip to main content
Log in

Copper incorporated hydroxyapatite encapsulated Kit-6 mesoporous silica as a novel and recoverable nanocatalyst for the synthesis of quinazolines

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This research work describes the synthesis of copper incorporated hydroxyapatite encapsulated Kit-6 (Cu@HAp@KIT-6) as a novel and impactful nanocatalyst and evaluation of its activity in the synthesis of quinazoline derivatives by a three-component reaction of 2-amino-5-chlorobenzophenone, ammonium acetate, and aromatic aldehydes in ethanol. This practical method produced the products with high to excellent yields (85–96%) and reasonable reaction time (1 h). The nanocatalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive analysis of X-rays, thermogravimetric analysis, differential thermogravimetric, and Transmission electron microscopy. The recyclability of the catalyst was also examined which preserved its main catalytic activity after six consecutive runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

References

  1. Teng Q, Huynh HV (2015) Controlled access to a heterometallic N-heterocyclic carbene helicate. Chem Commun 51:1248–1251

    CAS  Google Scholar 

  2. Yan JM, Zhang XB, Akita T, Haruta M, Xu Q (2010) One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327

    CAS  PubMed  Google Scholar 

  3. Decan MR, Impellizzeri S, Marin ML, Scaiano JC (2014) Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy. Nat Commun 5:4612–4619

    CAS  PubMed  Google Scholar 

  4. Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon TA (2007) Magnetically recyclable nanocomposite catalyst for olefin epoxidation. Angew Chem Int Ed 46:7039–7043

    CAS  Google Scholar 

  5. Yuan B, Pan Y, Li Y, Yin B, Jiang HA (2010) Highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. Angew Chem Int Ed 49:4054–4058

    CAS  Google Scholar 

  6. Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459

    CAS  Google Scholar 

  7. Santos BF et al (2017) C-S cross-coupling reaction using a recyclable palladium prolinate catalyst under mild and green conditions. Chem Select 2:9063–9068

    CAS  Google Scholar 

  8. Zaera F (2010) The new materials science of catalysis: toward controlling selectivity by designing the structure of the active site. J Phys Chem Lett 1:621–627

    CAS  Google Scholar 

  9. Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) New nanostructured heterogeneous catalysts with increased selectivity and stability. Phys Chem Chem Phys 13:2449–2456

    CAS  PubMed  Google Scholar 

  10. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    CAS  PubMed  Google Scholar 

  11. Wang D, Astruc D (2014) Fast-growing field of magnetically recyclable nanocatalysts. Chem Rev 114:6949–6985

    CAS  PubMed  Google Scholar 

  12. Zeng HC (2013) Integrated nanocatalysts. Acc Chem Res 46:226–235

    CAS  PubMed  Google Scholar 

  13. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    CAS  PubMed  Google Scholar 

  14. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348

    CAS  PubMed  Google Scholar 

  15. Kondo JN, Domen K (2008) Crystallization of mesoporous metal oxides. Chem Mater 20(3):835–847

    CAS  Google Scholar 

  16. Hoffmann F, Cornelius M, Morell J, Froeba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251

    CAS  Google Scholar 

  17. Soler-Illia GJ, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138

    PubMed  Google Scholar 

  18. Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silicananoparticles: structural design and applications. J Mater Chem 20:7924–7937

    CAS  Google Scholar 

  19. Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun. https://doi.org/10.1039/b306504a

    Article  Google Scholar 

  20. Kim TW, Kleitz F, Paul B, Ryoo R (2005) MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer−butanol−water system. J Am Chem Soc 127:7601–7610

    CAS  PubMed  Google Scholar 

  21. Dorozhkin SV (2008) Bioceramics based on calcium orthophosphates. Glass Ceram 64:442–447

    Google Scholar 

  22. Uddin MH, Matsumoto T, Ishihara S, Nakahira A, Okazaki M, Sohmura T (2010) Apatite containing aspartic acid for selective protein loading. J Dent Res 89(5):488–492

    CAS  PubMed  Google Scholar 

  23. Akazawa T, Kobayashi M, Kodaira K (1997) A newly designed adsorbent prepared from hydroxyapatite originating from cattle-bones for chromatographic separation of albumin and lysozyme. Bull Chem Soc Jpn 70:2323–2329

    CAS  Google Scholar 

  24. Zahouily M, Abrouki Y, Rayadh A, Sebti S, Dhimane H, David M (2003) Fluorapatite: efficient catalyst for the Michael addition. Tetrahedron Lett 44:2463–2465

    CAS  Google Scholar 

  25. Zhang Y, Santos JD (2000) Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications. J Non-Cryst Solids 272:14–21

    CAS  Google Scholar 

  26. Zhang Y, Li Z, Sun W, Xia C (2008) A magnetically recyclable heterogeneous catalyst: Cobalt nano-oxide supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient olefin oxidation with H2O2. Catal Commun 10:237–242

    CAS  Google Scholar 

  27. Tsoncheva T, Ivanova L, Rosenholm J, Linden M (2009) Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. Appl Catal B 89(3–4):365–374

    CAS  Google Scholar 

  28. Alam S, Anand C, Logudurai R, Balasubramanian VV, Ariga K, Bose AC, Mori T, Srinivasu P, Vinu A (2009) Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Micropor Mesopor Mater 121:178–184

    CAS  Google Scholar 

  29. Zhou L, Ren QJ, Zhou XF, Tang JW, Chen ZH, Yu CZ (2008) Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Micropor Mesopor Mater 109(1–3):248–257

    CAS  Google Scholar 

  30. Zhang Z, Zuo F, Feng P (2010) Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J Mater Chem 20:2206–2212

    CAS  Google Scholar 

  31. Kim H, Cho J (2008) Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J Mater Chem 18:771–775

    Google Scholar 

  32. Liu H, Wang G, Liu J, Qiao S, Ahn H (2011) Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. J Mater Chem 21:3046–3052

    CAS  Google Scholar 

  33. Xia Y, Dai H, Jiang H, Deng J, He H, Au CT (2009) Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environ Sci Technol 43:8355–8360

    CAS  PubMed  Google Scholar 

  34. Ma CY, Mu Z, Li JJ, Jin YG, Cheng J, Lu GQ, Hao ZP, Qiao SZ (2010) Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J Am Chem Soc 132:2608–2613

    CAS  PubMed  Google Scholar 

  35. Haffer S, Waitz T, Tiemann M (2010) Mesoporous In2O3 with regular morphology by nanocasting: A simple relation between defined particle shape and growth mechanism. J Phys Chem C 114:2075–2081

    CAS  Google Scholar 

  36. Gierszal KP, Kim T, Ryoo R, Jaroniec M (2005) Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Iad mesostructures as templates. J Phys Chem B 109(49):23263–23268

    CAS  PubMed  Google Scholar 

  37. Sakamoto Y, Kim T, Ryoo R, Terasaki O (2004) Three-dimensional structure of large-pore mesoporous cubic Ia3d silica with complementary pores and its carbon replica by electron crystallography. Angew Chem Int Ed 43:5231–5234

    CAS  Google Scholar 

  38. Wu Z, Meng Y, Zhao D (2010) Nanocasting fabrication of ordered mesoporous phenol-formaldehyde resins with various structures and their adsorption performances for basic organic compounds. Micropor Mesopor Mater 128:165–179

    CAS  Google Scholar 

  39. Shon JK, Kong SS, Kim JM, Ko CH, Jin M, Lee YY, Hwang SH, Yoon JA, Kim J (2009) Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chem Commun. https://doi.org/10.1039/B811718G

    Article  Google Scholar 

  40. Hu X, Zhao H, Wang Y, Liu Zh, Feng B, Tang Ch (2018) Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors. Bioorg Med Chem Lett 28(20):3385–3390

    CAS  PubMed  Google Scholar 

  41. Patel H, Shirkhedkar A, Bari S, Patil K, Arambhi A, Pardeshi Ch (2018) Quinazolino-thiadiazoles as antimicrobial agents. Bull Faculty of Pharm Cairo Univ 56(1):83–90

    Google Scholar 

  42. Asif M (2014) Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int J Med Chem 2014:1–27

    Google Scholar 

  43. Ouyang Y, Zou W, Peng L, Yang Zh, Tang Q, Chen M, Jia Sh, Zhang H, Lan Zh, Zheng P, Zhu W (2018) Design, synthesis, antiproliferative activity and docking studies of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline as potential EGFR inhibitors. Eur J Med Chem 154:29–43

    CAS  PubMed  Google Scholar 

  44. Panja SK, Dwivedi N, Saha S (2012) I2-Catalyzed three-component protocol for the synthesis of quinazolines. Tetrahedron Lett 53(46):6167–6172

    CAS  Google Scholar 

  45. Derabli C, Boulcina R, Kirsch G, Carboni B, Debache A (2014) A DMAP-catalyzed mild and efficient synthesis of 1, 2-dihydroquinazolines via a one-pot three-component protocol. Tetrahedron Lett 55(1):200–204

    CAS  Google Scholar 

  46. Dabiri M, Salehi P, Bahramnejad M (2010) Ecofriendly and efficient one-pot procedure for the synthesis of quinazoline derivatives catalyzed by an acidic ionic liquid under aerobic oxidation conditions. Synth Commun 40:3214–3225

    CAS  Google Scholar 

  47. Fujii A, Matsuo H, Choi J-C, Fujitani T, Fujita K-I (2018) Efficient synthesis of 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride. Tetrahedron 74:2914–2920

    CAS  Google Scholar 

  48. Dadgar M, Milani Kalkhorani N (2014) [γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones. Int J Nano Dimens 6(5):473–478

    Google Scholar 

  49. Abdolmohammadi S, Shariati S, Elmifard N, Samani A (2020) Aqueous-Mediated green synthesis of novel spiro [indole-quinazoline] derivatives using kit-6 mesoporous silica coated Fe3O4 nanoparticles as catalyst. J Heterocyclic Chem 57:2729

    CAS  Google Scholar 

  50. Babaei B, Mamaghani M, Mokhtary M (2019) Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst. Reac Kinet Mech Cat 128:379–394

    CAS  Google Scholar 

  51. Mamaghani M, Sheykhan M, Sadeghpour M, Tavakoli F (2018) An expeditious one-pot synthesis of novel bioactive indole-substituted pyrido[2,3-d]pyrimidines using Fe3O4@SiO2-supported ionic liquid nanocatalyst. Monatsh Chem 149:1437–1446

    CAS  Google Scholar 

  52. Mamaghani M, Shirini F, Sheykhan M, Mohsenimehr M (2015) Synthesis of a copper (II) complex covalently anchoring a (2-iminomethyl) phenol moiety supported on HAp-encapsulated-α-Fe2O3 as an inorganic-organic hybrid magnetic nanocatalyst for the synthesis of primary and secondary amides. RSC Adv 5(55):44524–44529

    CAS  Google Scholar 

  53. Kheirkhah L, Mamaghani M, Yahyazadeh A, Mahmoodi NO (2018) HAp-encapsulated γ-Fe2O3-supported dual acidic heterogeneous catalyst for highly efficient one-pot synthesis of benzoxanthenones and 3-pyranylindoles. Appl Organomet Chem 32(2):e4072

    Google Scholar 

  54. Ahmadiazar M, Mamaghani M (2018) Synthesis of (2-iminomethyl)pyridine moiety supported on hydroxyl apatite-encapsulated-γ-Fe2O3 as an inorganic-organic hybrid magnetic nanocatalyst for the synthesis of thiazole derivatives under ultrasonic irradiation. Curr Org Chem 22(13):1326–1334

    CAS  Google Scholar 

  55. Li B, Yao Ch, Shi Y, Ye D, Wu J, Zhao D (2013) A facile strategy for the preparation of well-dispersed bimetal oxide CuFe2O4 nanoparticles supported on mesoporous silica. J Mater Chem A 1:6742–6749

    CAS  Google Scholar 

  56. Mohsenimehr M, Mamaghani M, Shirini F, Sheykhan M, Moghaddam FA (2014) One-pot synthesis of novel pyrido[2,3-d]pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions. Chin Chem Lett 25(10):1387–1391

    CAS  Google Scholar 

  57. Jahanshahi P, Mamaghani M, Haghbin F, Nia RH, Rassa M (2018) One-pot chemoselective synthesis of novel pyrrole-substituted pyrido[2,3-d]pyrimidines using [γ-Fe2O3@HAp-SO3H] as an efficient nanocatalyst. J Mol Struct 1155:520–529

    CAS  Google Scholar 

  58. Mitsionis AI, Vaimakis TC (2010) A calorimetric study of the temperature effect on Calcium Phosphate precipitation. J Therm Anal Calorim 99:785–789

    CAS  Google Scholar 

  59. Galia CR, Lourenço LA, Rosito R, Souza Macedo CA, Quaresma Camargo LMA (2011) Physicochemical characterization of lyophilized bovin bone grafts. Rev Bras Ortop 46(4):444

    PubMed  Google Scholar 

  60. Maleki B, Vedad Mofrad A (2016) Efficient synthesis of quinazoline derivatives catalyzed by flourinated alcohol. Res Chem Intermed 43(5):3111–3120

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Council of University of Guilan for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Mamaghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7517 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirdelzendeh, D., Mamaghani, M., Shirini, F. et al. Copper incorporated hydroxyapatite encapsulated Kit-6 mesoporous silica as a novel and recoverable nanocatalyst for the synthesis of quinazolines. Reac Kinet Mech Cat 133, 441–454 (2021). https://doi.org/10.1007/s11144-021-02002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02002-y

Keywords

Navigation