Skip to main content
Log in

Enhanced photocatalytic nitrogen fixation performance of g-C3N4 under the burning explosion effect

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of novel sodium persulfate (Na2S2O8) modified g-C3N4 photocatalysts were prepared in this study to enhance nitrogen fixation. Characterization results found that the type of precursors and the mass ratio affect the crystal structure, morphology, and optical properties of the modified g-C3N4. The photocatalysts exhibited considerable nitrogen vacancies (NVs) depending on the nature of the different precursors and their mass ratios to Na2S2O8. In addition, the production rate of ammonia of the modified g-C3N4 was significantly higher than that of pure g-C3N4 under optimal conditions. The four cycles show modified g-C3N4 excellent stability. Combined with the results of pH test, the possible mechanism of the photocatalytic nitrogen fixation process using modified g-C3N4 was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, Li N, Kong Z, Ong W-J, Zhao X (2017) Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater Horiz 5(1):9–27

    Google Scholar 

  2. Van Deynze A, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D, Schwartz KD, Berry AM, Bhatnagar S, Jospin G, Darling A, Jeannotte R, Lopez J, Weimer BC, Eisen JA, Shapiro H-Y, Ané J-M, Bennett AB (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. https://doi.org/10.1371/journal.pbio.2006352

    Article  PubMed  PubMed Central  Google Scholar 

  3. Medford AJ, Hatzell MC (2017) Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal 7(4):2624–2643

    CAS  Google Scholar 

  4. Schrauzer GN, Guth TD (1977) Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc 99(22):7189–7193

    CAS  Google Scholar 

  5. Ranjit KT, Varadarajan TK, Viswanathan B (1996) Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J Photochem Photobiol A 96(1–3):181–185

    CAS  Google Scholar 

  6. Rusina O, Linnik O, Eremenko A, Kisch H (2003) Nitrogen photofixation on nanostructured iron titanate films. Chem A Eur J 9(2):561–565

    CAS  Google Scholar 

  7. Hu S, Chen X, Li Q, Zhao Y, Mao W (2016) Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal Sci Technol 6(15):5884–5890

    CAS  Google Scholar 

  8. Cao Y, Hu S, Li F, Fan Z, Bai J, Lu G, Wang Q (2016) Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. Rsc Adv 6(55):49862–49867

    CAS  Google Scholar 

  9. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    CAS  PubMed  Google Scholar 

  10. Hoffmann M, Martin S, Choi W, Bahnemann D (1995) Elemental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Google Scholar 

  11. Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4(3):675–678

    CAS  Google Scholar 

  12. Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444

    CAS  Google Scholar 

  13. Cao S, Fan B, Feng Y, Chen H, Jiang F, Wang X (2018) Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem Eng J 353:147–156

    CAS  Google Scholar 

  14. Hu S, Chen X, Li Q, Li F, Fan Z, Wang H, Wang Y, Zheng B, Wu G (2016) Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2016.08.002

    Article  Google Scholar 

  15. Wu X, Liu C, Li X, Zhang X, Wang C, Liu Y (2015) Effect of morphology on the photocatalytic activity of g-C3N4 photocatalysts under visible-light irradiation. Mater Sci Semicond Process 32:76–81

    CAS  Google Scholar 

  16. Naseri A, Samadi M, Pourjavadi A, Moshfegh AZ, Ramakrishna S (2017) Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J Mater Chem A 5(45):23406–23433

    CAS  Google Scholar 

  17. Ge J, Zhang L, Xu J, Liu Y, Jiang D, Du P (2020) Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chin Chem Lett 31(3):792–796

    CAS  Google Scholar 

  18. Zhang Q, Hu S, Fan Z, Liu D, Zhao Y, Ma H, Li F (2016) Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans 45(8):3497–3505

    CAS  PubMed  Google Scholar 

  19. Adewuyi YG, Sakyi NY (2013) Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature. Ind Eng Chem Res 52(33):11702–11711

    CAS  Google Scholar 

  20. De Vries KJ, Gellings PJ (1969) The thermal decomposition of potassium and sodium-pyrosulfate. J Inorg Nucl Chem 31(5):1307–1313

    Google Scholar 

  21. Dong H, Guo X, Yang C, Ouyang Z (2018) Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin. Appl Catal B 230:65–76

    CAS  Google Scholar 

  22. Ge J, Liu Y, Jiang D, Zhang L, Du P (2019) Integrating non-precious-metal cocatalyst Ni3N with g-C3N4 for enhanced photocatalytic H2 production in water under visible-light irradiation. Chin J Catal 40(2):160–167

    CAS  Google Scholar 

  23. Ge J, Jiang D, Zhang L, Du P (2018) Embedding noble-metal-free Ni2P cocatalyst on g-C3N4 for enhanced photocatalytic H2 evolution in water under visible light. Catal Lett 148(12):3741–3749

    CAS  Google Scholar 

  24. Han C, Wang Y, Lei Y, Wang B, Wu N, Shi Q, Li Q (2015) In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 8(4):1199–1209

    CAS  Google Scholar 

  25. Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho W-K (2013) In Situ Construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces 5(21):11392–11401

    CAS  PubMed  Google Scholar 

  26. Wu Y, Ward-Bond J, Li D, Zhang S, Shi J, Jiang Z (2018) g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catal 8:5664–5674

    CAS  Google Scholar 

  27. Liu Q, Guo Y, Chen Z, Zhang Z, Fang X (2016) Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl Catal B 183:231–241

    CAS  Google Scholar 

  28. Ye L, Chen S (2016) Fabrication and high visible-light-driven photocurrent response of g-C3N4 film: the role of thiourea. Appl Surf Sci 389:1076–1083

    CAS  Google Scholar 

  29. Zhang G, Zhang J, Zhang M, Wang X (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22(16):8083–8091

    CAS  Google Scholar 

  30. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21(38):14398–14401

    CAS  Google Scholar 

  31. Lin B, Li H, An H, Hao W, Wei J, Dai Y, Ma C, Yang G (2018) Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B Environ 220:542–552

    CAS  Google Scholar 

  32. Zheng Y, Zhang Z, Li C (2017) A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. J Photochem Photobiol A 332:32–44

    Google Scholar 

  33. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B 198:347–377

    CAS  Google Scholar 

  34. Ran J, Pan T, Wu Y, Chu C, Cui P, Zhang P, Ai X, Fu C-F, Yang Z, Xu T (2019) Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angew Chem Int Ed 58(46):16463–16468

    CAS  Google Scholar 

  35. Yan J, Zhou C, Li P, Chen B, Zhang S, Dong X, Xi F, Liu J (2016) Nitrogen-rich graphitic carbon nitride: Controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance. Coll Surf A 508:257–264

    CAS  Google Scholar 

  36. Hong J, Xia X, Wang Y, Xu R (2012) Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 22(30):15006–15012

    CAS  Google Scholar 

  37. Cui Y, Tang Y, Wang X (2015) Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants. Mater Lett 161:197–200

    CAS  Google Scholar 

  38. Zhu Y-P, Ren T-Z, Yuana Z-Y (2015) Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl Mater Interfaces 7(30):16850–16856

    CAS  PubMed  Google Scholar 

  39. Zhu B, Xia P, Li Y, Ho W, Yu J (2017) Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl Surf Sci 391:175–183

    CAS  Google Scholar 

  40. Xiao D, Dai K, Qu Y, Yin Y, Chen H (2015) Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light. Appl Surf Sci 358:181–187

    CAS  Google Scholar 

  41. Yang X, Qian F, Zou G, Li M, Lu J, Li Y, Bao M (2016) Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B 193:22–35

    CAS  Google Scholar 

  42. Lu C, Zhang P, Jiang S, Wu X, Song S, Zhu M, Lou Z, Li Z, Liu F, Liu Y, Wang Y, Le Z (2017) Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B 200:378–385

    CAS  Google Scholar 

  43. Li C, Du Y, Wang D, Yin S, Tu W, Chen Z, Kraft M, Chen G, Xu R (2017) Unique PCoN surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv Funct Mater. 27(4): 16042328–16042336.

    Google Scholar 

  44. Wei M, Gao L, Li J, Fang J, Cai W, Li X, Xu A (2016) Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation. J Hazard Mater 316:60–68

    CAS  PubMed  Google Scholar 

  45. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2 reduction performance. Appl Catal B 176–177:44–52

    Google Scholar 

  46. Liu H, Chen D, Wang Z, Jing H, Zhang R (2017) Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl Catal B 203:300–313

    CAS  Google Scholar 

  47. Fang W, Liu J, Yu L, Jiang Z, Shangguan W (2017) Novel (Na, O) co-doped g-C3N4 with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution. Appl Catal B 209:631–636

    CAS  Google Scholar 

  48. Dong G, Ho W, Wang C (2015) Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J Mater Chem A 3(46):23435–23441

    CAS  Google Scholar 

  49. Wang H, Bu Y, Wu G, Zou X (2019) The promotion of the photocatalytic nitrogen fixation ability of nitrogen vacancy-embedded graphitic carbon nitride by replacing the corner-site carbon atom with phosphorus. Dalton Trans 48(31):11724–11731

    CAS  PubMed  Google Scholar 

  50. Li W, Feng C, Dai S, Yue J, Hua F, Hou H (2015) Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl Catal B 168–169:465–471

    Google Scholar 

  51. Zhou Y, Zhang Q, Lin Y, Antonova E, Bensch W, Patzke GR (2013) One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: in situ growth monitoring and photocatalytic activity studies. Sci China Chem 56(4):435–442

    CAS  Google Scholar 

  52. Stradella L, Argentero M (1993) A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG-EGA. Thermochim Acta 219:315–323

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Fund of Anhui Province (Grant No. 1808085ME139) and Anhui Province University Outstanding Young Talents Project (Grant No. gxyq2020012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Ge.

Ethics declarations

Conflict of interest

All the authors in this work declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOC 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ge, J., Zhuang, T. et al. Enhanced photocatalytic nitrogen fixation performance of g-C3N4 under the burning explosion effect. Reac Kinet Mech Cat 132, 1211–1224 (2021). https://doi.org/10.1007/s11144-021-01947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01947-4

Keywords

Navigation