Skip to main content
Log in

Enhanced selectivity in the conversion of acrolein to 3-picoline over bimetallic catalyst 4.6%Cu–1.0%Ru/HZSM-5 (38) with hydrogen as carrier gas

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A bimetallic catalyst 4.6%Cu–1.0%Ru/HZSM-5 was found efficient in the conversion of acrolein and ammonia to 3-picoline in the presence of hydrogen as carrier gas. Hydrogen as a carrier gas enhanced the selectivity of 3-picoline and the total carbon yield of pyridines. TEM and XPS characterization revealed that copper and ruthenium are present in the forms of CuO and RuO2 species and reduced in situ to Cu0 and Ru0 in catalytic run, respectively. The two metal species are precisely located in the identical area and close to each other, allowing synergistic effect between the two metals in the hydrogenation or dehydrogenation elementary step in the reaction, also leading to high yield of 3-picoline and total carbon yield of pyridine bases. Besides, the good performance of 4.6%Cu–1.0%Ru/HZSM-5 compared to the other tested Cu–Ru bimetallic catalysts was derived from the comprehensive results of its surface area and hydrogenation or dehydrogenation activity. The characterization results of TEM, EDX, XPS, pyridine adsorption IR spectra, TG-DSC, and N2 adsorption–desorption analysis revealed that the catalyst deactivation was owing to the deposition of carbonaceous substances on the active sites of the catalyst during the catalytic reaction. The deposited carbonaceous substances could be removed by calcination in air at 550 °C, and the activity of the 4.6%Cu–1.0%Ru/HZSM-5 catalyst could be recovered completely. This catalyst also showed long lifetime compared to some of the reported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. US Patent No. 9120796 (2015)

  2. Adams RD, Chen M, Elpitiya G, Potter ME, Raja R (2013) ACS Catal 3:3106–3110

    Article  CAS  Google Scholar 

  3. Caglar S, Adiguzel E, Sariboga B, Temel E, Buyukgungor O (2014) J Coord Chem 67:670–683

    Article  CAS  Google Scholar 

  4. Liu Y, Yang H, Jin F, Zhang Y, Li Y (2008) Chem Eng J 136:282–287

    Article  CAS  Google Scholar 

  5. Hiroshi S, Shinkichi S, Nobuyuki A, Ken-ichi H (1994) Chem Lett 23:59–62

    Article  Google Scholar 

  6. Golunski SE, Jackson D (1986) Appl Catal 23:1–14

    Article  CAS  Google Scholar 

  7. Shimizu S, Abe N, Iguchi A, Sato H (1998) Catal Surv Jpn 2:71–76

    Article  CAS  Google Scholar 

  8. Xu L, Han Z, Yao Q, Deng J, Zhang Y, Fu Y, Guo Q (2015) Green Chem 17:2426–2435

    Article  CAS  Google Scholar 

  9. Luo C-W, Huang C, Li A, Yi W-J, Feng X-Y, Xu Z-J, Chao Z-S (2016) Ind Eng Chem Res 55:893–911

    Article  CAS  Google Scholar 

  10. Zhang Y, Yan X, Niu B, Zhao J (2016) Green Chem 18:3139–3151

    Article  CAS  Google Scholar 

  11. Zhang X, Wu Z, Liu W (2016) Chao Z-s. Catal Commun 80:10–14

    Article  CAS  Google Scholar 

  12. Zhang X, Wu Z (2016) Chao Z-s. J Mol Catal A Chem 411:19–26

    Article  CAS  Google Scholar 

  13. Zhang X, Luo C-W, Huang C, Chen B-H, Huang D-G, Pan J-G, Chao Z-S (2014) Chem Eng J 253:544–553

    Article  CAS  Google Scholar 

  14. Luo C-W, Chao Z-S (2015) RSC Adv 5:54090–54101

    Article  CAS  Google Scholar 

  15. Luo C-W, Li A (2018) React Kinet Mech Cat 125:365–380

    Article  CAS  Google Scholar 

  16. Lai W, Tian Y, Song W, Yang K, Lian Y, Fang W (2018) Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-018-1437-6

    Article  Google Scholar 

  17. Zhang Y, Zhang W, Zhang H-Y, Yin G, Zhao J (2019) Catal Today 319:220–228

    Article  CAS  Google Scholar 

  18. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098

    Article  CAS  Google Scholar 

  19. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Chem Soc Rev 41:8099–8139

    Article  CAS  PubMed  Google Scholar 

  20. Wei Z, Sun J, Li Y, Datye AK, Wang Y (2012) Chem Soc Rev 41:7994–8008

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Liu C-H, Chen L, Chen J-M, Guan Y, Wu P (2017) J Catal 351:10–18

    Article  CAS  Google Scholar 

  22. De S, Zhang J, Luqueb R, Yan N (2013) Energy Environ Sci 1–3:1–34

    Google Scholar 

  23. Meng X, Bi X, Yu C, Chen G, Chen B, Jing Z, Zhao P (2018) Green Chem. https://doi.org/10.1039/c8gc01816b

    Article  Google Scholar 

  24. Zhang Y, Ma T, Zhao J (2014) Energy Environ Sci 313:92–103

    CAS  Google Scholar 

  25. Luo C-W, Li A, An J-F, Feng X-Y, Zhang X, Feng D-D, Chao Z-S (2015) Chem Eng J 273:7–18

    Article  CAS  Google Scholar 

  26. Shimizu Y, Abe N, Iguchi A, Dohba M, Sato H, Hirose K (1998) Microporous Mesoporous Mater 21:447–451

    Article  CAS  Google Scholar 

  27. Hu Y, Liu J, Cheng J, Wang L, Tao L, Wang Q, Wang X, Ning P (2018) Appl Surf Sci 427:843–850

    Article  CAS  Google Scholar 

  28. Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A (2014) Appl Catal B Environ 148–149:520–531

    Article  CAS  Google Scholar 

  29. Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) J Am Chem Soc 134:13922–13925

    Article  CAS  PubMed  Google Scholar 

  30. Jiang S, Zhang H, Yan Y, Zhang X (2017) Microporous Mesoporous Mater 240:108–116

    Article  CAS  Google Scholar 

  31. Wang J, Wang Y, Xie S, Qiao M, Li H, Fan K (2004) Appl Catal A Gen 272:29–36

    Article  CAS  Google Scholar 

  32. Yuan Q, Zhang D, Haandel L, Ye F, Xue T, Hensen EJM, Guan Y (2015) J Mol Catal A Chem 406:58–64

    Article  CAS  Google Scholar 

  33. Chakroune N, Viau G, Ammar S, Poul L, Veautier D, Chehimi M, Mangeney C, Villain F, Fievet F (2005) Langmuir 21:6788–6796

    Article  CAS  PubMed  Google Scholar 

  34. Sun M, Du X, Wang H, Wu Z, Li Y, Chen L (2011) Chem Lett 141:1703–1708

    CAS  Google Scholar 

  35. Zhu L, Zheng J, Yu C, Zhang N, Shu Q, Zhou H, Li Y, Chen BH (2016) RSC Adv 6:13110–13119

    Article  CAS  Google Scholar 

  36. Volckmar C, Bron M, Bentrup U, Martin A, Claus P (2009) J Catal 261:1–8

    Article  CAS  Google Scholar 

  37. Emeis CA (1993) J Catal 141:347–354

    Article  CAS  Google Scholar 

  38. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

Download references

Acknowledgements

It is appreciated that this work was supported by the National Natural Science Foundation of China (Grant No. 21476057), the Natural Science Foundation of Hebei Province of China (Grant No. B2015202284, B2016202393), and the Program for the Top Young Innovative Talents of Hebei Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuecheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Duan, S. & Zhang, Y. Enhanced selectivity in the conversion of acrolein to 3-picoline over bimetallic catalyst 4.6%Cu–1.0%Ru/HZSM-5 (38) with hydrogen as carrier gas. Reac Kinet Mech Cat 127, 391–411 (2019). https://doi.org/10.1007/s11144-019-01558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01558-0

Keywords

Navigation