Skip to main content
Log in

Mechanism of Pt interfacial interaction with carbonaceous support under reductive conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The interaction of platinum with carbonaceous graphite-like material Sibunit was studied. It was found that carbon covers the platinum particles during the reduction in a hydrogen flow. Chemisorption of CO over such samples has shown that just a small part of Pt surface is opened and accessible for the reagents. The carbon support was additionally pretreated by a high temperature graphitization in nitrogen. The amount of surface oxygen-containing groups was increased by a treatment with nitric acid. An examination of the Pt-loaded samples in hydrogen has revealed that the oxidative treatment does not affect the activity in the carbon hydrogenation process. Both the initial and oxidized Pt-loaded samples facilitate intensive carbon interaction with hydrogen leading to quite similar amounts of methane released. Contrary, the graphitization of the support allows one to minimize the methane formation. Lower specific surface area and absence of amorphous carbon weaken the platinum–carbon interaction and facilitate the formation of larger particles, thus complicating the realization of hydrogenation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taylor HS. Catalysis. Encyclopædia Britannica Online. https://www.britannica.com/science/catalysis

  2. Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem Rev 112:5780–5817. https://doi.org/10.1021/cr300096b

    Article  CAS  Google Scholar 

  3. Masende ZPG (2004) Catalytic wet oxidation of organic wastes using platinum catalysts. Technische Universiteit Eindhoven, Eindhoven. https://doi.org/10.6100/IR575845

    Book  Google Scholar 

  4. Roy S, Vashishtha M, Saroha AK (2010) Catalytic wet air oxidation of oxalic acid using platinum catalysts in bubble column reactor: a review. J Eng Sci Technol Rev 3:95–107. http://www.jestr.org/downloads/volume3/fulltext192010.pdf

  5. Kogan SB, Herskowitz M (2005) Geometric and electronic factors in paraffin dehydrogenation on bimetallic platinum catalysts. Reac Kinet Catal Lett 85:341–345. https://doi.org/10.1007/s11144-005-0279-1

    Article  CAS  Google Scholar 

  6. Antolini E (2003) Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J Mater Sci 38:2995–3005. https://doi.org/10.1023/A:1024771618027

    Article  CAS  Google Scholar 

  7. Seselj N, Engelbrekt C, Zhang J (2015) Graphene-supported platinum catalysts for fuel cells. Sci Bull 60:864–876. https://doi.org/10.1007/s11434-015-0745-8

    Article  Google Scholar 

  8. Fuente AM, Pulgar G, González F, Pesquera C, Blanc C (2001) Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation. Appl Catal A-Gen 208:35–46. https://doi.org/10.1016/S0926-860X(00)00699-2

    Article  CAS  Google Scholar 

  9. Román-Martínez MC, Cazorla-Amorós D, Linares-Solano A, Salinas-Martínez de Lecea C (1994) Carbon dioxide hydrogenation catalyzed by alkaline earth- and platinum-based catalysts supported on carbon. Appl Catal A-Gen 116:187–204. https://doi.org/10.1016/0926-860X(94)80289-0

    Article  Google Scholar 

  10. J-p Du, Song C, J-l Song, J-h Zhao, Z-p Zhu (2009) Cyclohexane dehydrogenation over the platinum catalysts supported on carbon nanomaterials. J Fuel Chem Technol 37:468–472. https://doi.org/10.1016/S1872-5813(10)60003-5

    Article  Google Scholar 

  11. Arevalo-Bastante A, Álvarez-Montero MA, Bedia J, Gómez-Sainero LM, Rodriguez JJ (2015) Gas-phase hydrodechlorination of mixtures of chloromethanes with activated carbon-supported platinum catalysts. Appl Catal B-Environ 179:551–555. https://doi.org/10.1016/j.apcatb.2015.05.058

    Article  CAS  Google Scholar 

  12. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A-Gen 173:259–271. https://doi.org/10.1016/S0926-860X(98)00184-7

    Article  CAS  Google Scholar 

  13. Zhang L, Cheng B, Samulski ET (2004) In situ fabrication of dispersed, crystalline platinum nanoparticles embedded in carbon nanofibers. Chem Phys Lett 398:505–510. https://doi.org/10.1016/j.cplett.2004.09.120

    Article  CAS  Google Scholar 

  14. Zacharia R, Rather S-u, Hwang SW, Nahm KS (2007) Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes. Chem Phys Lett 434:286–291. https://doi.org/10.1016/j.cplett.2006.12.022

    Article  CAS  Google Scholar 

  15. Adjizian JJ, De Marco P, Suarez-Martinez I, El Mel AA, Snyders R, Gengler RYN, Rudolf P, Ke X, Van Tendeloo G, Bittencourt C, Ewels CP (2013) Platinum and palladium on carbon nanotubes: experimental and theoretical studies. Chem Phys Lett 571:44–48. https://doi.org/10.1016/j.cplett.2013.03.079

    Article  CAS  Google Scholar 

  16. Groves MN, Chan ASW, Malardier-Jugroot C, Jugroot M (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481:214–219. https://doi.org/10.1016/j.cplett.2009.09.074

    Article  CAS  Google Scholar 

  17. Babar VP, Jaiswal S, Kumar V (2013) Interaction of a carbon atom on small platinum clusters and its effects on hydrogen binding. Chem Phys Lett 560:42–48. https://doi.org/10.1016/j.cplett.2013.01.006

    Article  CAS  Google Scholar 

  18. Bittencourt C, Hecq M, Felten A, Pireaux JJ, Ghijsen J, Felicissimo MP, Rudolf P, Drube W, Ke X, Van Tendeloo G (2008) Platinum–carbon nanotube interaction. Chem Phys Lett 462:260–264. https://doi.org/10.1016/j.cplett.2008.07.082

    Article  CAS  Google Scholar 

  19. Lee S, Kahng S-J, Kuk Y (2010) Nano-level wettings of platinum and palladium on single-walled carbon nanotubes. Chem Phys Lett 500:82–85. https://doi.org/10.1016/j.cplett.2010.09.082

    Article  CAS  Google Scholar 

  20. Tsyrul’nikov PG, Iost KN, Shitova NB, Temerev VL (2016) Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: a review. Catal Ind 8:341–347. https://doi.org/10.1134/S2070050416040115

    Article  Google Scholar 

  21. Goethel PJ, Yang RT (1986) Platinum-catalyzed hydrogenation of graphite: Mechanism studied by the rates of monolayer channeling. J Catal 101:342–351. https://doi.org/10.1016/0021-9517(86)90261-7

    Article  CAS  Google Scholar 

  22. Goethel PJ, Yang RT (1988) The tunneling action of group VIII metal particles in catalyzed graphite hydrogenation. J Catal 114:46–52. https://doi.org/10.1016/0021-9517(88)90007-3

    Article  CAS  Google Scholar 

  23. Goethel PJ, Yang RT (1988) Mechanism of graphite hydrogenation catalyzed by ruthenium particles. J Catal 111:220–226. https://doi.org/10.1016/0021-9517(88)90079-6

    Article  CAS  Google Scholar 

  24. Zeng HS, Hihara T, Inazu K, K-i Aika (2001) Effect of methanation of active carbon support on the barium-promoted ruthenium catalyst for ammonia synthesis. Catal Lett 76:193–199. https://doi.org/10.1023/A:1012201613791

    Article  CAS  Google Scholar 

  25. Rossetti I, Pernicone N, Forni L (2005) Graphitised carbon as support for Ru/C ammonia synthesis catalyst. Catal Today 102–103:219–224. https://doi.org/10.1016/j.cattod.2005.02.010

    Article  CAS  Google Scholar 

  26. Zeng HS, Inazu K, K-i Aika (2001) Dechlorination process of active carbon-supported, barium nitrate-promoted ruthenium trichloride catalyst for ammonia synthesis. Appl Catal A-Gen 219:235–247. https://doi.org/10.1016/S0926-860X(01)00696-2

    Article  CAS  Google Scholar 

  27. Forni L, Molinari D, Rossetti I, Pernicone N (1999) Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl Catal A-Gen 185:269–275. https://doi.org/10.1016/S0926-860X(99)00144-1

    Article  CAS  Google Scholar 

  28. Shelepova EV, Vedyagin AA, Ilina LY, Nizovskii AI, Tsyrulnikov PG (2017) Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation. Appl Surf Sci 409:291–295. https://doi.org/10.1016/j.apsusc.2017.02.220

    Article  CAS  Google Scholar 

  29. Iost KN, Temerev VL, Smirnova NS, Shlyapin DA, Borisov VA, Muromtsev IV, Trenikhin MV, Kireeva TV, Shilova AV, Tsyrul’nikov PG (2017) Synthesis and study of Ru–Ba–Cs/Sibunit ternary catalysts for ammonia synthesis. Russ J Appl Chem 90:887–894. https://doi.org/10.1134/S1070427217060088

    Article  CAS  Google Scholar 

  30. Yermakov YI, Surovikin VF, Plaksin GV, Semikolenov VA, Likholobov VA, Chuvilin LV, Bogdanov SV (1987) New carbon material as support for catalysts. React Kinet Catal Lett 33:435–440. https://doi.org/10.1007/BF02128102

    Article  CAS  Google Scholar 

  31. Pyanova LG, Luzyanina LS, Drozdov VA, Veselovskaya AV, Arbuzov AB, Likholobov VA (2010) Study of the effect of a number of oxidizers on variation of composition of surface functional groups, porous structure, and adsorption properties of composite carbon-carbon sorbent. Prot Met Phys Chem Surf 46:320–324. https://doi.org/10.1134/S2070205110030056

    Article  CAS  Google Scholar 

  32. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  33. Bergeret G, Gallezot P (2008) Particle size and dispersion measurements. In: Weitkamp J (ed) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH &Co, Weinheim

    Google Scholar 

  34. Iost KN, Borisov VA, Temerev VL, Surovikin YV, Pavluchenko PE, Trenikhin MV, Arbuzov AB, Shlyapin DA, Tsyrulnikov PG, Vedyagin AA (2018) Carbon support hydrogenation in Pd/C catalysts during reductive thermal treatment. Int J Hydrogen Energy 43:17656–17663. https://doi.org/10.1016/j.ijhydene.2018.07.182

    Article  CAS  Google Scholar 

  35. Iost KN, Borisov VA, Temerev VL, Surovikin YV, Pavluchenko PE, Trenikhin MV, Lupanova AA, Arbuzov AB, Shlyapin DA, Tsyrulnikov PG, Vedyagin AA (2018) Study on the metal-support interaction in the Ru/C catalysts under reductive conditions. Surf Interface 12:95–101. https://doi.org/10.1016/j.surfin.2018.05.003

    Article  CAS  Google Scholar 

  36. Bukalov SS, Mikhalitsyn LA, Zubavichus YV, Leites LA, Novikov YN (2006) Study on the structure of graphites and some other sp2 carbon materials using coordination scattering micro-spectroscopic and roentgen diffraction methods. Russ Chem J 50:83–91 (In Russian)

    CAS  Google Scholar 

  37. Prado-Burguete C, Linares-Solano A, Rodriguez-Reinoso F, Salinas-Martinez De Lecea C (1991) Effect of carbon support and mean Pt particle size on hydrogen chemisorption by carbon-supported Pt catalysts. J Catal 128:397–404. https://doi.org/10.1016/0021-9517(91)90298-I

    Article  CAS  Google Scholar 

  38. Rodríguez-Reinoso F, Rodríguez-Ramos I, Moreno-Castilla C, Guerrero-Ruiz A, López-González JD (1986) Platinum catalysts supported on activated carbons: I. Preparation and characterization. J Catal 99:171–183. https://doi.org/10.1016/0021-9517(86)90210-1

    Article  Google Scholar 

  39. Okhlopkova LB, Lisitsyn AS, Likholobov VA, Gurrath M, Boehm HP (2000) Properties of Pt/C and Pd/C catalysts prepared by reduction with hydrogen of adsorbed metal chlorides: Influence of pore structure of the support. Appl Catal A-Gen 204:229–240. https://doi.org/10.1016/S0926-860X(00)00534-2

    Article  CAS  Google Scholar 

  40. Lisitsyn AS, Parmon VN, Duplyakin VK, Likholobov VA (2006) Modern problems and perspectives in research of supported palladium catalysts. Russ Chem J 50:140–153 (In Russian)

    Google Scholar 

  41. Godina LI, Tokarev AV, Simakova IL, Mäki-Arvela P, Kortesmäki E, Gläsel J, Kronberg L, Etzold B, Murzin DY (2018) Aqueous-phase reforming of alcohols with three carbon atoms on carbon-supported Pt. Catal Today 301:78–89. https://doi.org/10.1016/j.cattod.2017.03.042

    Article  CAS  Google Scholar 

  42. Tan PH, Deng YM, Zhao Q (1998) Temperature-dependent Raman spectra and anomalous Raman phenomenon of highly oriented pyrolytic graphite. Phys Rev B 58:5435–5439. https://doi.org/10.1103/PhysRevB.58.5435

    Article  CAS  Google Scholar 

  43. Tan PH, Dimovski S, Gogotsi Y (2004) Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones. Philos Trans A Math Phys Eng Sci 362:2289–2310. https://doi.org/10.1098/rsta.2004.1442

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and High Education of Russian Federation (Project AAAA-A17-117021450096-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iost, K.N., Borisov, V.A., Temerev, V.L. et al. Mechanism of Pt interfacial interaction with carbonaceous support under reductive conditions. Reac Kinet Mech Cat 127, 103–115 (2019). https://doi.org/10.1007/s11144-019-01554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01554-4

Keywords

Navigation