Skip to main content
Log in

Effect of the preparation method on the catalytic activity of the heterogeneous catalyst CuO/CeO2 for the oxidative degradation of sulfide and phenolic compounds

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The present study investigates the effect of different catalyst preparation methods (namely, co-precipitation, COP; sol gel, SG; urea gelation, UG; and solution combustion, SC) on the characteristics and performance of a non-noble metal based supported heterogeneous catalyst (CuO/CeO2) for the treatment of synthetic wastewater. To test their efficacy, two wastewater solutions were selected, i.e. inorganic: sulfide-laden wastewater, S2− concentration = 250 mg/L and organic: phenolic wastewater (phenol and o-cresol with total phenolic concentration = 1500 mg/L). The fresh catalyst samples were characterized for particle size distribution using sieves (25–125 µm), transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area and ICP-AES. The recovered catalysts were also subjected to different analyses to understand the changes in the catalyst during reaction. Maximum oxidation of sulfide and phenolic compounds occurred with H2O2 in the presence of the catalyst prepared by SC method. This method also resulted in the most stable catalyst showing low amount of active metal leaching (Cu = 2% and Ce = 0.2%) as compared to COP (25.8, 7.0%), SG (38.3, 31.3%) and UG (39.6, 26.5%) methods, for which Cu and Ce leaching were ~ 26–40 and 7–31%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali E, Rahman M, Sarkar SM, Bee S, Hamid A (2014) J Nanomater 209:1–23

    Google Scholar 

  2. Levec J, Pintar A (2007) Catal Today 124:172–184

    Article  CAS  Google Scholar 

  3. Mata-Alvarez J, Macé S, Llabrés P (2000) Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  4. Pirkanniemi K, Sillanpää M (2002) Chemosphere 48:1047–1060

    Article  CAS  Google Scholar 

  5. Hočevar S, Krašovec UO, Orel B, Aricó AS, Kim H (2000) Appl Catal B Environ 28:113–125

    Article  Google Scholar 

  6. Liu W, Flytzani-Stephanopoulos M (1996) Chem Eng J 64:283–294

    CAS  Google Scholar 

  7. Garg A, Mishra A (2013) J Hazard Toxic Radioact 17:89–96

    Article  CAS  Google Scholar 

  8. Yadav BR, Garg A (2012) Ind Eng Chem Res 51:15778–15785

    Article  CAS  Google Scholar 

  9. Bera P, Aruna ST, Patil KC, Hegde MS (1999) J Catal 186:36–44

    Article  CAS  Google Scholar 

  10. Liu Y, Fu Q, Stephanopoulos MF (2004) Catal Today 93–95:241–246

    Article  Google Scholar 

  11. Hariz IB, Monser L (2014) Int Water Technol J 4:264–267

    Google Scholar 

  12. Kulkarni SJ (2013) Int J Sci Res 3:1–5

    Google Scholar 

  13. Heidarinasab A, Hashemi SR (2011) Int Conf Chem Ecol Environ Sci (ICCEES)

  14. Oprea F, Fendu EM, Nicolae M, Pantea O, Dunka M (2010) Rev Chim 61:608–666

    CAS  Google Scholar 

  15. Hawari A, Ramadan H, Abu-Reesh I, Ouederni M (2015) J Environ Manage 151:105–112

    Article  CAS  Google Scholar 

  16. Schieder D, Schneider R, Bischof F (2000) Water Sci Technol 41:181–187

    CAS  Google Scholar 

  17. Kavitha V, Palanivelu K (2004) Chemosphere 55:1235–1243

    Article  CAS  Google Scholar 

  18. Kavitha V, Palanivelu K (2005) Water Res 39:3062–3072

    Article  CAS  Google Scholar 

  19. Kang YW, Hwang KY (2000) Water Res 34:2786–2790

    Article  CAS  Google Scholar 

  20. Patterson AL (1939) Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  21. Packer AP, Larivière D, Li C, Chen M, Fawcett A, Nielsen K, Mattson K, Chatt A, Scriver C, Erhardt LS (2007) Anal Chim Acta 588:166–172

    Article  CAS  Google Scholar 

  22. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington

    Google Scholar 

  23. Alves AK, Bergmann CP, Berutti FA (2013) Novel synthesis and characterization of nanostructured materials. Springer, Berlin

    Book  Google Scholar 

  24. Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B Environ 56:87–93

    Article  CAS  Google Scholar 

  25. Krylova V, Andruleviçius M (2009) Int J Photoenergy 2009

  26. Perez-Benito JF (2001) Monatshefte Chem 132:1477–1492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Bombay (IIT Bombay), Central Facility, Department of Chemistry, IIT Bombay and Metallurgical Engineering & Materials Science Department, IIT Bombay, for helping us in the catalyst characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Garg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Garg, A. Effect of the preparation method on the catalytic activity of the heterogeneous catalyst CuO/CeO2 for the oxidative degradation of sulfide and phenolic compounds. Reac Kinet Mech Cat 124, 101–121 (2018). https://doi.org/10.1007/s11144-017-1318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1318-4

Keywords

Navigation