Skip to main content
Log in

Chemical conversion in 1-butelene hydroformylation catalyzed by the (Ar)3P/[Rh] system

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In order to improve the selectivity of 2-methybutanal in the 1-butelene hydroformylation reaction, triarylphosphine ligands [(CnH2n+1–C6H4)3P (n = 4, L3; n = 6, L4; n = 8, L5; n = 10, L6)] are prepared by Friedel–Crafts alkylation reactions and characterized by 1H NMR, 13C NMR, 31P NMR and HRMS. When combined with Rh(acac)(CO)2, the L/[Rh] systems show high catalytic activity for the hydroformylation of 1-butelene. The influences of different substituents on the catalytic behavior are studied, and the effects of the molar ratio of [P]/[Rh], reaction temperature, reaction time and pressure of CO/H2 on the yield of 2-methylbutanal are also investigated. When the ratio of [P]/[Rh] = 3, the content of 2-methylbutanal in carbonyl products reaches 48.1%. It is surprising to find the intermediate conversion in 1-butelene hydroformylation reaction and the mechanism is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Chart 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. Franke R, Selent D, Börner A (2012) Chem Rev 112(11):5675–5732

    Article  CAS  Google Scholar 

  2. Fernández-P H, Etayo P, Panossian A, Vidal FA (2011) Chem Rev 111(3):2119–2176

    Article  Google Scholar 

  3. van Leeuwen PWNM, Kamer PCJ, Claver C, Pàmies O, Diéguez H (2011) Chem Rev 111(3):2077–2118

    Article  Google Scholar 

  4. Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui Y (2016) Angew Chem Int Ed 55(52):16178

    Article  CAS  Google Scholar 

  5. Kalck P, Urrutigoïty M (2016) Topics Organomet Chem 1–30

  6. Pogrzeba T, Müller D, Hamerla T, Esche E, Paul N, Wozny G, Schomacker R (2015) Ind Eng Chem Res 54(48):11953–11960

    Article  CAS  Google Scholar 

  7. Zagajewski M, Behr A, Sasse P, Wittmann J (2014) Chem Eng Sci 115:88–94

    Article  CAS  Google Scholar 

  8. Rost A, Müller M, Hamerla T, Kasaka Y, Wozny G, Schomäcker R (2013) Ind Eng Chem Res 67(5):130–135

    CAS  Google Scholar 

  9. Khokhar MD, Shukla RS, Jasra RV (2015) Reac Kinet Mech Cat 114:265–277

    Article  CAS  Google Scholar 

  10. Jiang M, Yan L, Sun XP, Lin RH, Song XG, Jiang Z, Ding YJ (2015) Reac Kinet Mech Cat 116:223–234

    Article  CAS  Google Scholar 

  11. Ganga VSR, Dabbawala AA, Munusamy K, Abdi SHR, KureshyR I, Khan NH, Bajaj HC (2016) Catal Commun 84:21–24

    Article  CAS  Google Scholar 

  12. Kontkanen ML, Tuikka M, Kinnunen NM, Suvanto S, Haukka M (2013) Catalysts 3(1):324–337

    Article  CAS  Google Scholar 

  13. Lang R, Li TB, Matsumura DJ, Miao S, Ren YJ, Cui YT, Tan Y, Qiao BT, Li L, Wang AQ, Wang XD, Zhang T (2016) Angew Chem 128:16288–16292

    Article  Google Scholar 

  14. Ren XY, Zheng ZY, Zhang L, Wang Z, Xia CG, Ding KL (2017) Angew Chem Int Ed Engl 56(1):310–313

    Article  CAS  Google Scholar 

  15. Kawashima S, Aikawa K, Mikami K (2016) Eur J Org Chem 19:3166–3170

    Article  Google Scholar 

  16. Gaide T, Bianga J, Schlipköter K, Behr A, Vorholt AJ (2017) ACS Catal 7(6):4163–4171

    Article  CAS  Google Scholar 

  17. Pandey S, Chikkali SH (2015) ChemCatChem 7(21):3468–3471

    Article  CAS  Google Scholar 

  18. Cai CX, Yu SC, Liu GD, Zhang XZ, Zhang XM (2011) Adv Synth Catal 353:2665–2670

    Article  CAS  Google Scholar 

  19. Chikkali SH, Bellini R, De BB, Ji VDV, Reek JN (2012) J Am Chem Soc 134(15):6607

    Article  CAS  Google Scholar 

  20. Chikkali SH, Vlugt JIVD, Reek JNH (2014) Coord Chem Rev 262(18):1–15

    Article  CAS  Google Scholar 

  21. Schmitz C, Holthusen K, Leitner W, Franciò G (2016) ACS Catal 6(3):1584–1589

    Article  CAS  Google Scholar 

  22. Shaikh MN, Bououdina M, Jimoh AA, Aziz MA, Helal A, Hakeem AS, Yamani ZH, Kim TJ (2015) New J Chem 39(9):7293–7299

    Article  CAS  Google Scholar 

  23. Yan Y, Zhang X (2006) J Am Chem Soc 128(22):7198–7202

    Article  CAS  Google Scholar 

  24. Grünanger CU, Breit B (2008) Angew Chem Int Ed 47(38):7346–7349

    Article  Google Scholar 

  25. Shichao Yu, Chie Yu-ming, Guan Zheng-hui, Zou Yaping, Li Wei, Zhang Xumu (2009) Org Lett 11(1):241–244

    Article  Google Scholar 

  26. Adint TT, Landis CR (2014) J Am Chem Soc 136:7943–7953

    Article  CAS  Google Scholar 

  27. Smith RT, Ungar RK, Baird MC (1982) Trans Met Chem 7:288–289

    Article  CAS  Google Scholar 

  28. Jiang WL, Dou BQ, Zhou GL, Zhou HJ, Zang PY (2014) Chem Eng 4(3):49–53

    Google Scholar 

  29. Brown CK, Wilkinson G (1970) J Chem Soc A 2753–2764

  30. Bianchini C, Lee HM, Meli A, Vizza F (2000) Organometallics 19:849–853

    Article  CAS  Google Scholar 

  31. Nelsen ER, Brezny AC, Landis CR (2015) J Am Chem Soc 137(44):14208–14219

    Article  CAS  Google Scholar 

  32. Brezny AC, Landis CR (2017) J Am Chem Soc 139(7):2778–2785

    Article  CAS  Google Scholar 

  33. Selent D, Franke R, Kubis C, Spannenberg A, Baumann W, Kreidler B, Börner A (2011) Organometallics 30:4509–4514

    Article  CAS  Google Scholar 

  34. Kubis C, Selent D, Sawall M, Ludwig R, Neymeyr K, Baumann W, Franke R, Börner A (2012) Chemistry A 18:8780–8794

    CAS  Google Scholar 

  35. Kubis C, Ludwig R, Sawall M, Neymeyr K, Börner A, Wiese KD, Hess D, Franke R, Selent D (2010) Chem Cat Chem 2:287–295

    CAS  Google Scholar 

  36. Bond D (2007) Computational methods in organic thermochemistry. 2. Enthalpies and free energies of formation for functional derivatives of organic hydrocarbons. J Org Chem 72:7313–7328

    Article  CAS  Google Scholar 

  37. Yan L, Ding YJ, Liu J, Zhu HJ, Lin LW (2011) Chin J Catal 32(1):31–35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the National Natural Science Foundation of China for financial support for this Projects (U1162111 and U1362111), and GanSu Nature Science Foundation (1606RJZA114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, H., Zhu, Y. et al. Chemical conversion in 1-butelene hydroformylation catalyzed by the (Ar)3P/[Rh] system. Reac Kinet Mech Cat 122, 1049–1062 (2017). https://doi.org/10.1007/s11144-017-1255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1255-2

Keywords

Navigation