Skip to main content
Log in

Sustainable C–C bond formation through Knoevenagel reaction catalyzed by MgO-based catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A study of the Knoevenagel condensation of p-substituted benzaldehydes with malononitrile or ethyl cyanoacetate over potassium, calcium and lanthanum modified MgO was carried out under thermal and microwave activation. The catalysts were fully characterized to determine their textural, structural and surface acid–base properties. The whole set of catalysts were essayed in propan-2-ol test reaction in order to gain a better understanding of their acid–base properties. As for the surface basic properties of the catalysts, the modification of MgO with Ca and K led to solids with enhanced basicity while La modification slightly reduced the basicity of bare MgO. Inductive and mesomeric effects of the substituent in p-substituted benzaldehydes were coherent with a reaction mechanism in which a nucleophilic attack to the carbon atom of the carbonyl group takes place. Malononitrile or ethyl cyanoacetate were used as the active methylene reagent and the reaction was faster in the case of malononitrile as compared to ethyl cyanoacetate, indicating that the nucleophile formation (carbanion) on the catalyst basic sites is an important issue in this reaction. As for the catalysts, the overall reactivity order in thermal Knoevenagel condensation was \({\text{MgO}}-{\text{K}}\left( {\text{I}} \right)>{\text{MgO}}-{\text{K}}\left( {\text{II}} \right)>{\text{MgO}}-{\text{Ca}}\left( {\text{I}} \right) \approx {\text{MgO}}{-}{\text{La}}\left( {\text{II}} \right) \approx {\text{MgO}}>{\text{MgO}}{-}{\text{La}}\left( {\text{I}} \right)\), which completely agrees with the catalyst basicity extracted from the propan-2-ol test reaction (yield to acetone). The above correlation confirmed that, in Knoevenagel condensation, the carbanion formation on the surface basic sites of the catalysts is a key step in the reaction mechanism. The microwave-activated Knoevenagel reaction was much faster than the conventional, thermally activated reaction. The results indicate that the nucleophilic character of the Knoevenagel condensation also prevails under microwave activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marinas A, Marinas JM, Aramendia MA, Urbano FJ (2005) New developments in catalysis research, New York

  2. Corma A, Iborra S (2006) Adv Catal 49(49):239–302

    CAS  Google Scholar 

  3. Wei Y, Zhang S, Yin S, Zhao C, Luo S, Au C-T (2011) Catal Commun 12:1333–1338

    Article  CAS  Google Scholar 

  4. Gawande MB, Jayaram RV (2006) Catal Commun 7:931–935

    Article  CAS  Google Scholar 

  5. Yuzhakova T, Rakic V, Guimon C, Auroux A (2007) Chem Mater 19:2970–2981

    Article  CAS  Google Scholar 

  6. Ivanova AS (2005) Kinet Catal 46:620–633

    Article  CAS  Google Scholar 

  7. Ivanova AS, Moroz BL, Moroz EM, Larichev YV, Paukshtis EA, Bukhtiyarov VI (2005) J Solid State Chem 178:3265–3274

    Article  CAS  Google Scholar 

  8. Sun LB, Yang J, Kou JH, Gu FN, Chun Y, Wang Y, Zhu JH, Zou ZG (2008) Angewandte Chemie Int Ed 47:3418–3421

    Article  CAS  Google Scholar 

  9. Wang Y, Huang WY, Chun Y, Xia JR, Zhu JH (2001) Chem Mater 13:670–677

    Article  CAS  Google Scholar 

  10. Sun Y-H, Sun L-B, Li T-T, Liu X-Q (2010) J Phys Chem C 114:18988–18995

    Article  CAS  Google Scholar 

  11. Yin SF, Xu BQ, Wang SJ, Au CT (2006) Appl Catal 301:202–210

    Article  CAS  Google Scholar 

  12. Tsuji H, Kabashima H, Kita H, Hattori H (1995) React Kinet Catal Lett 56:363–369

    Article  CAS  Google Scholar 

  13. Wang Y, Zhu JH, Huang WY (2001) Phys Chem Chem Phys 3:2537–2543

    Article  CAS  Google Scholar 

  14. Ikeue K, Miyoshi N, Tanaka T, Machida M (2011) Catal Lett 141:877–881

    Article  CAS  Google Scholar 

  15. Peng YQ, Song GH (2003) Indian journal of chemistry. Org Chem Incl Med Chem 42:924–926

    Google Scholar 

  16. Angelescu E, Pavel OD, Birjega R, Zavoianu R, Costentin G, Che M (2006) Appl Catal 308:13–18

    Article  CAS  Google Scholar 

  17. Calvino-Casilda V, Martin-Aranda RM, Lopez-Peinado AJ, Sobczak I, Ziolek M (2009) Catal Today 142:278–282

    Article  CAS  Google Scholar 

  18. Hasegawa T, Krishnan CK, Ogura M (2010) Microporous Mesoporous Mater 132:290–295

    Article  CAS  Google Scholar 

  19. Ruiz JR, Jimenez-Sanchidrian C, Hidalgo JM (2007) Catal Commun 8:1036–1040

    Article  CAS  Google Scholar 

  20. Aramendia MA, Borau V, Garcia IM, Jimenez C, Marinas A, Marinas JM, Urbano FJ (2003) Applied Catalysis 43:71–79

    Article  CAS  Google Scholar 

  21. Manriquez-Ramirez M, Gomez R, Hernandez-Cortez JG, Zuniga-Moreno A, Reza-San CM (2013) German, S.O. flores-valle. Catal Today 212:23–30

    Article  CAS  Google Scholar 

  22. Ardizzone S, Bianchi CL, Vercelli B (1998) Coll Surf A 144:9–17

    Article  CAS  Google Scholar 

  23. Cho YB, Seo G, Chang DR (2009) Fuel Process Technol 90:1252–1258

    Article  CAS  Google Scholar 

  24. Taufiq-Yap YH, Lee HV, Hussein MZ, Yunus R (2011) Biomass Bioenerg 35:827–834

    Article  CAS  Google Scholar 

  25. Alarcon N, Garcia X, Centeno MA, Ruiz P, Gordon A (2004) Appl Catal 267:251–265

    Article  CAS  Google Scholar 

  26. Jimenez R, Garcia X, Cellier C, Ruiz P, Gordon AL (2006) Appl Catal 314:81–88

    Article  CAS  Google Scholar 

  27. Natile MM, Ugel E, Maccato C, Glisenti A (2007) Appl Catal 72:351–362

    Article  CAS  Google Scholar 

  28. Gonzalez-Cortes SL, Aray I, Rodulfo-Baechler SMA, Lugo CA, Del Castillo HL, Loaiza-Gil A, Imbert FE, Figueroa H, Pernia W, Rodriguez A, Delgado O, Casanova R, Mendialdua J, Rueda F (2007) J Mater Sci 42:6532–6540

    Article  CAS  Google Scholar 

  29. Aramendia MA, Borau V, Jimenez C, Marinas JM, Porras A, Urbano FJ (1997) J Chem Soc Faraday Trans 93:1431–1438

    Article  CAS  Google Scholar 

  30. Aramendia MA, Borau V, Jimenez C, Marinas JM, Porras A, Urbano FJ (1999) J Mater Chem 9:819–825

    Article  CAS  Google Scholar 

  31. Dewick PM (2006) Essentials of organic chemistry. Wiley, Chichester, pp 125–135

    Google Scholar 

  32. Climent MJ, Corma A, Iborra S, Velty A (2002) J Mol Catal A 182–183:327–342

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the staff at the Central Service for Research Support (SCAI) of the University of Córdoba for their assistance in ICP-MS measurements. Supported by Spanish MICINN and MEC (CTQ2008-01330, CTQ2010-18126) and Junta de Andalucía (P08-FQM-3931 and P09-FQM-4781 projects), co-financed by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Urbano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez, L., Hidalgo-Carrillo, J., Marinas, A. et al. Sustainable C–C bond formation through Knoevenagel reaction catalyzed by MgO-based catalysts. Reac Kinet Mech Cat 118, 247–265 (2016). https://doi.org/10.1007/s11144-016-1003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1003-z

Keywords

Navigation