Skip to main content
Log in

Effect of pre-treatment and modification conditions of natural zeolites on the decomposition and reduction of N2O

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The decomposition of N2O and reduction of N2O with NH3 on natural and modified zeolites were studied by a steady state reaction. Two different natural zeolites having different phase compositions were modified by ion exchange (0.5 M NH4NO3) and acid leaching (1 M HCl) and treated under low temperature, high temperature and steam conditions. It was observed that the surface modification of natural zeolites depends strongly on their structure and composition. The modification of zeolites by ion exchange and acid leaching increases the decomposition activity of N2O because of the formation of isolated iron and Fe–O–Al species. However, these modifications insignificantly affect the reduction of N2O with NH3. High temperature and steam treatments lead to dealumination, loss of crystallinity, sintering of phases and the formation of amorphous material in zeolites, resulting in a significant decrease in the decomposition and reduction activity of N2O. The kinetic evaluation for N2O decomposition predicts that the rate-limiting step is the recombinative desorption of molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perez-Ramirez J, Kapteijn F, Groen JC, Domenech A, Mul G, Moulijn JA (2003) Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. J Catal 214(1):33–45. doi:10.1016/S0021-9517(02)00021-0

    Article  CAS  Google Scholar 

  2. Perez-Ramirez J, Kumar MS, Bruckner A (2004) Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. J Catal 223(1):13–27. doi:10.1016/j.jcat.2004.01.007

    Article  CAS  Google Scholar 

  3. Kiwi-Minsker L, Bulushev DA, Renken A (2003) Active sites in HZSM-5 with low Fe content for the formation of surface oxygen by decomposing N2O: is every deposited oxygen active? J Catal 219(2):273–285. doi:10.1016/S0021-9517(03)00222-7

    Article  CAS  Google Scholar 

  4. Hensen EJM, Zhu Q, van Santen RA (2003) Extraframework Fe–Al–O species occluded in MFI zeolite as the active species in the oxidation of benzene to phenol with nitrous oxide. J Catal 220(2):260–264. doi:10.1016/j.jcat.2003.09.001

    Article  CAS  Google Scholar 

  5. Panov GI, Uriarte AK, Rodkin MA, Sobolev VI (1998) Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites. Catal Today 41(4):365–385. doi:10.1016/S0920-5861(98)00026-1

    Article  CAS  Google Scholar 

  6. Nowinska K, Waclaw A, Izbinska A (2003) Propane oxydehydrogenation over transition metal modified zeolite ZSM-5. Appl Catal A-Gen 243(2):225–236. doi:10.1016/S0926-860x(02)00504-5

    Article  CAS  Google Scholar 

  7. Kondratenko EV, Perez-Ramirez J (2004) Oxidative functionalization of propane over FeMFI zeolites effect of reaction variables and catalyst constitution on the mechanism and performance. Appl Catal A-Gen 267(1–2):181–189. doi:10.1016/j.apcata.2004.03.003

    Article  CAS  Google Scholar 

  8. Bertea L, Kouwenhoven HW, Prins R (1995) Vapor-phase nitration of benzene over modified mordenite catalysts. Appl Catal A-Gen 129(2):229–250

    Article  CAS  Google Scholar 

  9. Christidis GE, Moraetis D, Keheyan E, Akhalbedashvili L, Kekelidze N, Gevorkyan R, Yeritsyan H, Sargsyan H (2003) Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Appl Clay Sci 24(1–2):79–91. doi:10.1016/S0169-1317(03)00150-9

    Article  CAS  Google Scholar 

  10. Zhang WP, Han XW, Liu XC, Lei H, Liu XM, Bao XH (2002) Investigation of the microporous structure and non-framework aluminum distribution in dealuminated nanosized HZSM-5 zeolite by Xe-129 NMR spectroscopy. Microporous Mesoporous Mater 53(1–3):145–152

    Article  CAS  Google Scholar 

  11. Pirngruber GD, Roy PK, Prins R (2006) On determining the nuclearity of iron sites in Fe-ZSM-5—a critical evaluation. Phys Chem Chem Phys 8(34):3939–3950. doi:10.1039/B606205a

    Article  CAS  Google Scholar 

  12. Heyden A, Hansen N, Bell AT, Keil FJ (2006) Nitrous oxide decomposition over Fe-ZSM-5 in the presence of nitric oxide: a comprehensive DFT study. J Phys Chem B 110(34):17096–17114. doi:10.1021/Jp062814t

    Article  CAS  Google Scholar 

  13. Elaiopoulos K, Perraki T, Grigoropoulou E (2010) Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N-2-porosimetry analysis. Microporous Mesoporous Mater 134(1–3):29–43. doi:10.1016/j.micromeso.2010.05.004

    Article  CAS  Google Scholar 

  14. Kustov LM, Tarasov AL, Bogdan VI, Tyrlov AA, Fulmer JW (2000) Selective oxidation of aromatic compounds on zeolites using N2O as a mild oxidant—a new approach to design active sites. Catal Today 61(1–4):123–128. doi:10.1016/S0920-5861(00)00354-0

    Article  CAS  Google Scholar 

  15. Kaucky D, Sobalik Z, Schwarze M, Vondrova A, Wichterlova B (2006) Effect of FeH-zeolite structure and Al-Lewis sites on N2O decomposition and NO/NO2-assisted reaction. J Catal 238(2):293–300. doi:10.1016/j.jcat.2005.12.017

    Article  CAS  Google Scholar 

  16. Wang JY, Xia HA, Ju XH, Feng ZC, Fan FT, Li C (2013) Influence of extra-framework Al on the structure of the active iron sites in Fe/ZSM-35. J Catal 300:251–259. doi:10.1016/j.jcat.2013.01.011

    Article  CAS  Google Scholar 

  17. Sazama P, Wichterlova B, Tabor E, Stastny P, Sathu NK, Sobalik Z, Dedecek J, Sklenak S, Klein P, Vondrova A (2014) Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3–SCR–NOx. J Catal 312:123–138. doi:10.1016/j.jcat.2014.01.019

    Article  CAS  Google Scholar 

  18. Zhu Q, van Teeffelen RM, van Santen RA, Hensen EJM (2004) Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3. II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane. J Catal 221(2):575–583. doi:10.1016/j.jcat.2003.09.025

    Article  Google Scholar 

  19. Hensen EJM, Zhu Q, Hendrix MMRM, Overweg AR, Kooyman PJ, Sychev MV, van Santen RA (2004) Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3. I Physicochemical characterization. J Catal 221(2):560–574. doi:10.1016/j.jcat.2003.09.024

    Article  Google Scholar 

  20. Roy PK, Prins R, Pirngruber GD (2008) The effect of pretreatment on the reactivity of Fe-ZSM-5 catalysts for N2O decomposition: dehydroxylation vs. steaming. Appl Catal B-Environ 80(3–4):226–236. doi:10.1016/j.apcatb.2007.10.015

    Article  CAS  Google Scholar 

  21. Pirngruber GD, Roy PK, Weiher N (2004) An in situ X-ray absorption spectroscopy study of N2O decomposition over Fe-ZSM-5 prepared by chemical vapor deposition of FeCl3. J Phys Chem B 108(36):13746–13754. doi:10.1021/Jp048346+

    Article  CAS  Google Scholar 

  22. Krishna K, Makkee M (2006) Preparation and pretreatment temperature influence on iron species distribution and N2O decomposition in Fe-ZSM-5. Catal Lett 106(3–4):183–193. doi:10.1007/s10562-005-9628-y

    Article  CAS  Google Scholar 

  23. Hensen EJM, Zhu Q, Janssen RAJ, Magusin PCMM, Kooyman PJ, van Santen RA (2005) Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites. 1. On the role of iron and aluminum. J Catal 233(1):123–135. doi:10.1016/j.jcat.2005.04.009

    Article  CAS  Google Scholar 

  24. Centi G, Genovese C, Giordano G, Katovic A, Perathoner S (2004) Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N2O. Catal Today 91–2:17–26. doi:10.1016/j.cattod.2004.03.004

    Article  Google Scholar 

  25. Centi G, Giordano G, Fejes P, Katovic A, Lazar K, Nagy JB, Perathoner S, Pino F (2004) Active and spectator iron species in Fe/MFI catalysts for benzene selective hydroxylation with N2O. Stud Surf Sci Catal 154:2566–2573

    Article  Google Scholar 

  26. Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L (2004) Benzene hydroxylation over FeZSM-5 catalysts: which Fe sites are active? J Catal 227(1):138–147. doi:10.1016/j.jcat.2004.06.014

    Article  CAS  Google Scholar 

  27. Ates A, Reitzmann A, Hardacre C, Yalcin H (2011) Abatement of nitrous oxide over natural and iron modified natural zeolites. Appl Catal A-Gen 407(1–2):67–75. doi:10.1016/j.apcata.2011.08.026

    Article  CAS  Google Scholar 

  28. Ates A (2007) Characteristics of Fe-exchanged natural zeolites for the decomposition of N2O and its selective. Catalytic reduction with NH3. Appl Catal B-Environ 76(3–4):282–290. doi:10.1016/j.apcatb.2007.06.005

    Article  CAS  Google Scholar 

  29. Ates A, Hardacre C (2012) The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments. J Colloid Interf Sci 372:130–140. doi:10.1016/j.jcis.2012.01.017

    Article  CAS  Google Scholar 

  30. Ates A, Reitzmann A (2007) Experimental techniques for investigating the surface oxygen formation in the N2O decomposition on Fe-MFI zeolites. Chem Eng J 134(1–3):218–227. doi:10.1016/j.cej.2007.03.045

    Article  CAS  Google Scholar 

  31. Dubkov KA, Sobolev VI, Panov GI (1998) Low-temperature oxidation of methane to methanol on FeZSM-5 zeolite. Kinet Catal + 39(1):72–79

    CAS  Google Scholar 

  32. Joyner R, Stockenhuber M (1999) Preparation, characterization, and performance of Fe-ZSM-5 catalysts. J Phys Chem B 103(29):5963–5976. doi:10.1021/Jp990978m

    Article  CAS  Google Scholar 

  33. Panov GI, Sobolev VI, Kharitonov AS (1990) The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed. J Mol Catal 61(1):85–97

    Article  CAS  Google Scholar 

  34. Kapteijn F, Marban G, RodriguezMirasol J, Moulijn JA (1997) Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts. J Catal 167(1):256–265. doi:10.1006/jcat.1997.1581

    Article  CAS  Google Scholar 

  35. Wood BR, Reimer JA, Bell AG (2002) Studies of N(2)O adsorption and decomposition on Fe-ZSM-5. J Catal 209(1):151–158. doi:10.1006/jcat.2002.3610

    Article  CAS  Google Scholar 

  36. Wood BR, Reimer JA, Bell AT, Janicke MT, Ott KC (2004) Nitrous oxide decomposition and surface oxygen formation on Fe-ZSM-5. J Catal 224(1):148–155. doi:10.1016/j.jcat.2004.02.025

    Article  CAS  Google Scholar 

  37. Zhu Q, Mojet BL, Janssen RAJ, Hensen EJM, van Grondelle J, Magusin PCMM, van Santen RA (2002) N2O decomposition over Fe/ZSM-5: effect of high-temperature calcination and steaming. Catal Lett 81(3–4):205–212. doi:10.1023/A:1016581107432

    Article  CAS  Google Scholar 

  38. Pirngruber GD, Roy PK (2005) A look into the surface chemistry of N2O decomposition on iron zeolites by transient response experiments. Catal Today 110(3–4):199–210. doi:10.1016/j.cattod.2005.09.023

    Article  CAS  Google Scholar 

  39. Ates A, Reitzmann A, Hardacre C, Yalcin H (2011) Abatement of nitrous oxide over natural and iron modified natural zeolites. Appl Catal A 407(1–2):67–75. doi:10.1016/j.apcata.2011.08.026

    Article  CAS  Google Scholar 

  40. Sun K, Xia H, Feng Z, van Santen R, Hensen E, Li C (2008) Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide. J Catal 254(2):383–396. doi:10.1016/j.jcat.2008.01.017

    Article  CAS  Google Scholar 

  41. Pirngruber GD, Luechinger M, Roy PK, Cecchetto A, Smirniotis P (2004) N2O decomposition over iron-containing zeolites prepared by different methods: a comparison of the reaction mechanism. J Catal 224(2):429–440. doi:10.1016/j.jcat.2004.03.031

    Article  CAS  Google Scholar 

  42. Roy PK, Pirngruber GD (2004) The surface chemistry of N2O decomposition on iron-containing zeolites(II)—the effect of high-temperature pretreatments. J Catal 227(1):164–174. doi:10.1016/j.jcat.2004.07.004

    Article  CAS  Google Scholar 

  43. Ates A (2014) Influence of treatment conditions on decomposition activity of N2O over FeZSM-5 with high iron content. Catal Sci Technol 4(7):2031–2041. doi:10.1039/C3cy00974b

    Article  CAS  Google Scholar 

  44. Kondratenko EV, Kondratenko VA, Santiago M, Perez-Ramirez J (2008) Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N(2)O decomposition. J Catal 256(2):248–258. doi:10.1016/j.jcat.2008.03.016

    Article  CAS  Google Scholar 

  45. Delahay G, Mauvezin M, Coq B, Kieger S (2001) Selective catalytic reduction of nitrous oxide by ammonia on iron zeolite beta catalysts in an oxygen rich atmosphere: effect of iron contents. J Catal 202(1):156–162. doi:10.1006/jcat.2001.3279

    Article  CAS  Google Scholar 

  46. Guzman-Vargas A, Delahay G, Coq B (2003) Catalytic decomposition of N2O and catalytic reduction of N2O and N2O + NO by NH3 in the presence of O-2 over Fe-zeolite. Appl Catal B-Environ 42(4):369–379. doi:10.1016/S0926-3373(02)00268-0

    Article  CAS  Google Scholar 

  47. Brandenberger S, Krocher O, Tissler A, Althoff R (2010) The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl Catal B-Environ 95(3–4):348–357. doi:10.1016/j.apcatb.2010.01.013

    Article  CAS  Google Scholar 

  48. Zhang XY, Shen Q, He C, Ma CY, Cheng J, Hao ZP (2012) N2O catalytic reduction by NH3 over Fe-zeolites: effective removal and active site. Catal Commun 18:151–155. doi:10.1016/j.catcom.2011.11.029

    Article  Google Scholar 

  49. Schwidder M, Kumar MS, Klementiev K, Pohl MM, Bruckner A, Grunert W (2005) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content—I. Relations between active site structure and catalytic performance. J Catal 231(2):314–330. doi:10.1016/j.jcat.2005.01.031

    Article  CAS  Google Scholar 

  50. Schwidder M, Grunert W, Bentrup U, Bruckner A (2006) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies. J Catal 239(1):173–186. doi:10.1016/j.jcat.2006.01.024

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK,) under the Project Number of 107M435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayten Ates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, A. Effect of pre-treatment and modification conditions of natural zeolites on the decomposition and reduction of N2O. Reac Kinet Mech Cat 114, 421–432 (2015). https://doi.org/10.1007/s11144-014-0795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0795-y

Keywords

Navigation