Skip to main content
Log in

Effects of morphology and crystal phase of sulfated nano-titania solid acids on catalytic esterification

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, sulfated TiO2 nanostructures with different morphology structures and anatase/rutile phase ratios were synthesized by a hydrothermal method followed by calcination. The nanotube, nanorod and nanoparticle morphologies were obtained by varying the hydrothermal and/or annealing temperatures, and the anatase/rutile phase ratio was adjusted by controlling the annealing temperature. The characterization indicated well dispersed bidentate SO4 2− linked to the TiO2 surface. The catalytic activity of the synthesized sample was evaluated by the esterification of acetic acid with n-butanol. It was shown that the prepared sulfated titania possessed different catalytic activity. Effects of different reaction conditions were discussed. The catalytic activity was dominated by the concentration of surface acid sites of the catalyst. Hence, with the help of TEM, SEM, XRD and BET analyses, the concentration of surface acid sites per unit area of sulfated TiO2 was correlated with the type of morphology and increased linearly with the rutile phase content. The nanoparticle morphology and high rutile phase ratio were favorable for the catalytic activity per unit area of sulfated TiO2 in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuriakose G, Nagaraju N (2004) J Mol Catal A 223:155

    Article  CAS  Google Scholar 

  2. Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P (2006) Chem Eng J 116:61

    Article  CAS  Google Scholar 

  3. Ahmed I, Khan NA, Mishra DK, Lee JS, Hwang J, Jhung SH (2013) Chem Eng Sci 93:91

    Article  CAS  Google Scholar 

  4. Lin CH, Chien SH, Chao JH, Sheu CY, Cheng YC, Huang YJ, Tsai CH (2002) Catal Lett 80:153

    Article  CAS  Google Scholar 

  5. Hosseini-Sarvari M, Sodagar E (2013) C R Chimie 16:229

    Article  CAS  Google Scholar 

  6. Ropero-Vegaa JL, Aldana-Péreza A, Gómezb R, Niño-Gómeza ME (2010) Appl Catal A 379:24

    Article  Google Scholar 

  7. Kelly TL, Che SPY, Yamada Y, Yano K, Wolf MO (2008) Langmuir 24:9809

    Article  CAS  Google Scholar 

  8. Muruganandham M, Wu JJ (2008) Appl Catal B 80:32

    Article  CAS  Google Scholar 

  9. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Nano Lett 7:69

    Article  CAS  Google Scholar 

  10. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  11. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) J Phys Chem B 108:5547

    Article  CAS  Google Scholar 

  12. Lan Y, Gao XP, Zhu HY, Zheng ZY, Yan TY, Wu F, Ringer SP, Song DY (2005) Adv Funct Mater 15:1310

    Article  CAS  Google Scholar 

  13. Yu FQ, Huang YZ, Cole AJ, Yang VC (2009) Biomaterials 30:4716

    Article  CAS  Google Scholar 

  14. Mu JS, Wang Y, Zhao M, Zhang L (2012) Chem Commun 48:2540

    Article  CAS  Google Scholar 

  15. Liu X, Wang Q, Zhao HH, Zhang LC, Su YY, Lv Y (2012) Analyst 137:4552

    Article  CAS  Google Scholar 

  16. Yang YX, Ma J, Qin QD, Zhai XD (2007) J Mol Catal A 267:41

    Article  CAS  Google Scholar 

  17. Liu G, Chen ZG, Dong CL, Zhao YN, Li F, Lu GQ, Cheng HM (2006) J Phys Chem B 110:20823

    Article  CAS  Google Scholar 

  18. Ohtani B, Zhang SW, Nishimoto S, Kagiya T (1992) J Chem Soc Faraday Trans 88:1049

    Article  CAS  Google Scholar 

  19. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) Angew Chem 114:2935

    Article  Google Scholar 

  20. Ohno T, Sarukawa K, Matsumura M (2002) New J Chem 26:1167

    Article  CAS  Google Scholar 

  21. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A 244:383

    Article  CAS  Google Scholar 

  22. Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104:4815

    Article  CAS  Google Scholar 

  23. Song S, Liu ZW, He ZQ, Zhang AL, Chen JM (2010) Environ Sci Technol 44:3913

    Article  CAS  Google Scholar 

  24. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448

    Article  CAS  Google Scholar 

  25. Suwannakarn K, Lotero E, Goodwin-Jr JG (2007) Ind Eng Chem Res 46:7050

    Article  CAS  Google Scholar 

  26. Zhang J, Li MJ, Feng ZC, Chen J, Li C (2006) J Phys Chem B 110:927

    Article  CAS  Google Scholar 

  27. Ribeiro C, Vila C, Stroppa DB, Mastelaro VR, Bettini J, Longo E, Leite ER (2007) J Phys Chem C 111:5871

    Article  CAS  Google Scholar 

  28. Noda L, de-Almeida R, Probst LF, Goncalves N (2005) J Mol Catal A 225:39

    Article  CAS  Google Scholar 

  29. Rezaee M, Khoie SMM, Liu KH (2011) CrystEngComm 13:5055

    Article  CAS  Google Scholar 

  30. Chen PF, Du MX, Lei H, Wang Y, Zhang GL, Zhang FB, Fan XB (2012) Catal Commun 18:47

    Article  Google Scholar 

  31. Reddy BM, Sreekanth PM, Lakshmanan P (2005) J Mol Catal A 237:93

    Article  CAS  Google Scholar 

  32. Li ZL, Wnetrzak Kwapinski RW, Leahy JJ (2012) ACS Appl Mater Interfaces 4:4499

    Article  CAS  Google Scholar 

  33. Polshettiwar V, Luque R, Fihri A, Zhu HB (2011) Chem Rev 111:3036

    Article  CAS  Google Scholar 

  34. Zhang YH, Zhao YF, Chen S, Yu B, Xu JL, Xu HJ, Hao LD, Liu ZM (2013) J Mater Chem A 1:6138

    Article  CAS  Google Scholar 

  35. Grabstanowicz LR, Gao SM, Li T, Rickard RM, Rajh T, Liu DJ, Xu T (2013) Inorg Chem 52:3884

    Article  CAS  Google Scholar 

  36. Zhu CH, Guo MC, Zhu XB, Chen JF, Su JH (2012) Appl Magn Reson 42:313

    Article  CAS  Google Scholar 

  37. Shi WP, Li JW (2014) Reac Kinet Mech Cat 111:215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Key Technology Research and Development Program (2012BAD32B03-4) and the Cooperative Innovation Foundation of Industry, Academy and Research Institutes (BY2013015-10) in Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Jiang, P., Dong, Y. et al. Effects of morphology and crystal phase of sulfated nano-titania solid acids on catalytic esterification. Reac Kinet Mech Cat 113, 445–458 (2014). https://doi.org/10.1007/s11144-014-0756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0756-5

Keywords

Navigation