Skip to main content
Log in

Pulses of the Electromagnetic Field with a Non-Zero Electric Area

  • Published:
Radiophysics and Quantum Electronics Aims and scope

A Correction to this article was published on 01 June 2023

This article has been updated

We analyze the possibility of existence of electromagnetic-field pulses with a non-zero electric area (time integral of the electric field) within the framework of the Maxwell equations. It is demonstrated that in the absence of charges and currents in vacuum, the non-zero electric area of a pulse would lead to its infinite energy. A pulse with the non-zero area is shown to form already in the case of uniform and rectilinear motion of the charge. The conditions for formation of such pulses by a localized charge system are found, and an example of such a system is presented. The asymptotics of the electric area far from the system of charges is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, No. 1, 163–234 (2009). https://doi.org/10.1103/RevModPhys.81.163

    Article  ADS  Google Scholar 

  2. K. Midorikawa, Nature Photonics, 16, No. 4, 267–278 (2022). https://doi.org/10.1038/s41566-022-00961-9

    Article  ADS  Google Scholar 

  3. B.Xue, K. Midorikawa, and E. J.Takahashi, Optica, 2022. 9, No. 4, 360–363 (2022). https://doi.org/10.1364/OPTICA.449979

  4. M.Yu.Ryabikin, M.Yu.Emelin, and V.V. Strelkov, Phys. Usp. (accepted for publication). https://doi.org/10.3367/UFNe.2021.10.039078

  5. J. Jackson, Classical Electrodynamics, Wiley (1998).

  6. E. G. Bessonov, Sov. Phys. JETP, 53, No. 3, 433–436 (1981).

    ADS  Google Scholar 

  7. E. G. Bessonov, Pis’ma Zh. Tekh. Fiz., 53, No. 7, 1368–1371 (1983).

    Google Scholar 

  8. E. G. Bessonov, Nuclear Instruments and Methods in Physics Research, A308, Nos. 1–2, 135–139 (1991). https://doi.org/10.1016/0168-9002(91)90611-S

    Article  ADS  Google Scholar 

  9. V. I. Alexeev and E.G.Bessonov, Nuclear Instruments and Methods in Physics Research, B173, No. 1–2, 54–60 (2001). https://doi.org/10.1016/S0168-583X(00)00417-1

    Article  ADS  Google Scholar 

  10. N. L.Popov and A. V. Vinogradov, Foundations, 1, No. 2, 169–174 (2021). https://doi.org/10.3390/foundations1020012

    Article  Google Scholar 

  11. P. Saari and I. M. Besiris, Foundations, 2, No. 1, 199–208 (2022). https://doi.org/10.3390/foundations2010012

    Article  Google Scholar 

  12. N. L.Popov and A. V. Vinogradov, Symmetry, 13, No. 4, 529 (2021). https://doi.org/10.3390/sym13040529

    Article  ADS  Google Scholar 

  13. N. N. Rosanov, R. M. Arkhipov, and M. V. Arkhipov, Phys. Usp, 61, 1227–1233 (2018). 0.3367/UFNe.2018.07.038386

  14. R. M. Arkhipov, M.V.Arkhipov, and N.N.Rosanov, Quantum Electron., 50, No. 9, 801 (2020). https://doi.org/10.1070/QEL17348

    Article  ADS  Google Scholar 

  15. N. N. Rosanov, Dissipative Optical and Related Solitons [in Russian], Fizmatlit (2021).

  16. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Elsevier (1980).

  17. V. I. Smirnov, A Course of Higher Mathermatics. Vol. 2, Pergamon (2014).

  18. N. N. Rosanov, Optics Spectrosc., 127, 1050–1052 (2019). https://doi.org/10.1134/S0030400X19120208

    Article  Google Scholar 

  19. N. N. Rosanov, Optics Spectrosc., 127, 1050–1052 (2019). https://doi.org/10.1134/S0030400X19120208

    Article  Google Scholar 

  20. N. N. Rosanov, Dissative Optical Solitons. From Micro- to Nano- and Atto- [in Russian], Fizmatlit (2011).

  21. N. N. Rosanov, Optics Spectrosc. 128, 92–93 (2020). https://doi.org/10.1134/S0030400X20010191

    Article  ADS  Google Scholar 

  22. N. N. Rosanov, Optics Spectrosc. 128, 490–492 (2020). https://doi.org/10.1134/S0030400X20040177

    Article  ADS  Google Scholar 

  23. N. N. Rosanov, Tech. Phys. Lett., 46, 165–167 (2020). https://doi.org/10.1134/S1063785020020261

    Article  ADS  Google Scholar 

  24. N. N. Rosanov, Phys. Usp. (accepted for publication). https://doi.org/10.3367/UFNe.2022.12.039297

  25. Ya.B. Zel’dovich, Zh. Èksp. Teor. Fiz., 33, No. 6, 1531–1533 (1957).

  26. R. M. Feschenko, I. A. Artyukov, and A. V. Vinogradov, Proc. VI Intern. Conf. Ultrafast Optical Science «UltrafastLight-2022». 3–7 October 2022, Moscow.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rosanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 12, pp. 1003–1014, December 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_12_1003

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plachenov, A.B., Rosanov, N.N. Pulses of the Electromagnetic Field with a Non-Zero Electric Area. Radiophys Quantum El 65, 911–921 (2023). https://doi.org/10.1007/s11141-023-10267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10267-7

Navigation