Skip to main content
Log in

On the Possibility of Advancement of the Non-Stationary Gas Spectroscopy Method Realized by Using Fast Frequency Sweep Mode Up the Terahertz Frequency Range

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Fast frequency sweep mode is a promising method for spectrum recording in a sufficiently wide frequency range within a short time (about a few milliseconds). This approach permits one to detect all substances which have intense absorption lines lying in the frequency range of the spectrometer and which are in a gas mixture when the spectrum is recorded. A spectroscopic system consisting of spectrometers for the centimeter and two-millimeter wavelength ranges operating in fast frequency sweep mode is presented. The possibility of creating a radiation source with fast frequency sweep based on a quantum cascade laser of the terahertz frequency range is explored. The results of numerical simulation for such a source based on experimental characteristics of the studied quantum cascade laser are given. The possibility of using these spectrometers to examine the composition of a mixture of vapors and thermal decomposition products of the tissues of ENT organs is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Gibin and P. E.Kotlyar, Usp. Prikl. Fiz ., 6, No. 2, 117–129 (2018).

    Google Scholar 

  2. A. Amann, B. de Lacy Costello, M.Miekisch, et al., J. Breath Res., 8, 034001 (2014). https://doi.org/10.1088/1752-7155/8/3/034001

  3. B. de Lacy Costello, A.Amann, H. Al-Kateb, et al., J. Breath Res., 8, 014001 (2014). https://doi.org/10.1088/1752-7155/8/1/014001

  4. V. L.Vaks, E.G.Domracheva, E.A. Sobakinskaya, and M. B. Chernyaeva, Phys. Usp., 57, No. 7, 684–701 (2014). https://doi.org/https://doi.org/10.3367/UFNe.0184.201407d.0739

    Article  ADS  Google Scholar 

  5. V.V.Khodos, D.A.Ryndyk, and V. L.Vaks, Eur. Phys. J. Appl. Phys., 25, 203–208 (2004). https://doi.org/https://doi.org/10.1051/epjap:2004008

    Article  ADS  Google Scholar 

  6. V.L.Vaks, V.A.Anfertev, V.Yu. Balakirev, et al., Phys. Usp., 63, No. 7, 708–720 (2020). https://doi.org/https://doi.org/10.3367/UFNe.2019.07.038613

    Article  ADS  Google Scholar 

  7. J. C. McGurk, T.G. Schmalz, and W. H. Flygare, J. Chem. Phys., 60, 4181–4188 (1974). https://doi.org/https://doi.org/10.1063/1.1680886

    Article  ADS  Google Scholar 

  8. S. Albert, D. T.Petkie, R.P.A.Bettens, et al., Anal. Chem. News and Features, 70, No. 21, 719A–727A (1998). https://doi.org/10.1021/ac982015+

  9. J. Steinfeld, ed., Laser and Coherence Spectroscopy, Springer, New York (1078). https://doi.org/10.1007/978-1-4684-2352-5

  10. G. G. Brown, B. C. Dian, K.O.Douglass, et al., Rev. Sci. Instrum., 79, 053103 (2008). https://doi.org/10.1063/1.2919120

  11. A. L. Steber, B. J.Harris, J. L. Neill, and B.H.Pate, J. Mol. Spectrosc., 280, 3–10 (2012). https://doi.org/https://doi.org/10.1016/j.jms.2012.07.015

    Article  ADS  Google Scholar 

  12. B. M. Hays, T.Guillaume, T. S. Hearne, et al., J. Quant. Spectrosc. Radiat. Transf ., 250, 107001 (2020). https://doi.org/10.1016/j.jqsrt.2020.107001

  13. F. Hindle, C. Bray, K.Hickson, et al., J. Infrared Millim. Terahertz Waves, 39, 105–119 (2018). https://doi.org/10.1007/s10762-017-0445-3

  14. J. L. Neill, B. J. Harris, A. L. Steber, et al., Opt. Express, 21, No. 17, 19743–19749 (2013). https://doi.org/https://doi.org/10.1364/OE.21.019743

    Article  ADS  Google Scholar 

  15. C.H.Towns and A. L. Shawlow, Microwave Spectroscopy, McGraw–Hill, New York (1955).

  16. G. N. Makarov, Tech. Phys., 47, No. 12, 1495–1500 (2002). https://doi.org/https://doi.org/10.1134/1.1529937

    Article  Google Scholar 

  17. N. G.Korobeishchikov and A. E. Zarvin, Vestnik NGU, Ser. Fizika, 1, No. 2, 29–47 (2006).

    Google Scholar 

  18. V. L.Vaks, E.G.Domracheva, M. B. Chernyaeva, et al., J. Opt. Technol., 89, No. 4, 243–249 (2002). https://doi.org/https://doi.org/10.1364/JOT.89.000243

    Article  Google Scholar 

  19. A. V. Brailovsky, V.V.Khodos, and V. L.Vaks, “The methods of reaching top sensitivity in microwave spectroscopy” preprint No. 377, Inst. Appl. Phys. RAS, Nizhny Novgorod (1995).

  20. B.Röben, X. Lü, K.Biermann, et al., J. Appl. Phys., 125, 151613 (2019). https://doi.org/10.1063/1.5079701

  21. B. Williams, Nat. Photonics, 1, 517–525 (2007). https://doi.org/https://doi.org/10.1038/nphoton.2007.166

    Article  ADS  Google Scholar 

  22. A. Khalatpour, A.K.Paulsen, C.Deimert, et al., Photonics, 15, No. 1, 16–20 (2021). https://doi.org/10.1038/s41566-020-00707-5

  23. M. Wienold, B.Röben, X. Lü, et al., Appl. Phys. Lett., 107, 202101 (2015). https://doi.org/10.1063/1.4935942

  24. X.Wang, Ch. Shen, T. Jiang, et al., AIP Adv., 6, 075210 (2016). https://doi.org/10.1063/1.4959195

  25. B. S. Williams, S.Kumar, Q.Hu, and J. L.Reno, Opt. Express, 13, 3331–3339 (2005). https://doi.org/https://doi.org/10.1364/OPEX.13.003331

    Article  ADS  Google Scholar 

  26. B. S. Williams, S.Kumar, Q.Hu, and J. L.Reno, Electron. Lett., 42, 89–91 (2006). https://doi.org/https://doi.org/10.1049/el:20063921

    Article  ADS  Google Scholar 

  27. D. Bachmann, M.Rosch, M. J. Suess, et al., Optica, 3, No. 10, 1087–1094 (2016). https://doi.org/https://doi.org/10.1364/OPTICA.3.001087

    Article  ADS  Google Scholar 

  28. G. Agnew, A. Grier, T.Taimre, et al., IEEE J. Quantum Electron., 54, No. 2, 2300108 (2018). https://doi.org/10.1109/JQE.2018.2806948

  29. M. T. McCulloch, G.Duxbury, and N. Langford, Mol. Phys., 104, 2767–2779 (2006). https://doi.org/https://doi.org/10.1080/00268970600857651

    Article  ADS  Google Scholar 

  30. G. Duxbury, N. Langford, M.T.McCulloch, and S.Wright, Mol. Phys., 105, 741–754 (2007). https://doi.org/https://doi.org/10.1080/00268970601181549

    Article  ADS  Google Scholar 

  31. E.A.McCormack, H. S. Lowth, M. T. Bell, et al., J. Chem. Phys., 137, 034306 (2012). https://doi.org/10.1063/1.4734020

  32. M. Singleton, P. Jouy, M.Beck, and J. Faist, Optica, 5, No. 8, 948–953 (2018). https://doi.org/https://doi.org/10.1364/OPTICA.5.000948

    Article  ADS  Google Scholar 

  33. http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

  34. https://cdms.astro.uni-koeln.de/cgi-bin/cdmssearch

  35. A. Smolinska, E. M. Klaassen, J. W. Dallinga, et al., PLoS One, 9, No. 4, e95668 (2014). https://doi.org/10.1371/journal.pone.0095668

  36. M. Caldeira, R.Perestrelo, A. S.Barros, et al., J. Chromatogr. A, 1254, 87–97 (2012). https://doi.org/10.1016/j.chroma.2012.07.023

  37. M. Phillips, V. Basa-Dalay, G.Bothamley, et al., Tuberculosis, 90, No. 2, 145–151 (2010). https://doi.org/10.1016/j.tube.2010.01.003

  38. J. Demaison, Spectroscopy from Space, ed. by J. Demaison, K. Sarka, and E.A. Cohen, Kluwer Academic Publishers, Dordrecht (2001), pp. 91–106.

  39. S. Kumar, Q.Hu, and J. L.Reno, Appl. Phys. Lett., 94, 131105 (2009). https://doi.org/10.1063/1.3114418

  40. W. Gordy and R. L. Cook, Techniques of Chemistry, Vol. 18, Microwave Molecular Spectra, John Wiley & Sons, New York (1984).

  41. V.Vaks, A.Aizenshtadt, V.Anfertev, et al., Appl. Sci ., 11, 7562 (2021). https://doi.org/10.3390/app11167562

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Chernyaeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 10, pp. 835–852, October 2022. Russian https://doi.org/10.52452/00213462_2022_65_10_835

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaks, V.L., Anfertev, V.A., Chernyaeva, M.B. et al. On the Possibility of Advancement of the Non-Stationary Gas Spectroscopy Method Realized by Using Fast Frequency Sweep Mode Up the Terahertz Frequency Range. Radiophys Quantum El 65, 760–774 (2023). https://doi.org/10.1007/s11141-023-10255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10255-x

Navigation