Skip to main content
Log in

Stabilization of the Radiation Frequency of a Gyrotron with a Remote Reflector Under the Conditions of Interaction of the Equidistant-Spectrum Modes

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the possibility to stabilize the gyrotron frequency under the influence of a wave reflected from a remote output window during the competition of the operating mode with two neighboring modes, which have frequencies equally spaced from the frequency of the operating mode. The window is assumed to reflect radiation at the frequency of the operating mode and be transparent for the neighboring modes. The influence of the shift of the reflector within the limits of several wavelengths on the frequency stabilization is considered. The fluctuations in the frequency and phase of the radiation, which are caused by low-frequency technical noises of the accelerating voltage of the electron beam, in a stand-alone gyrotron and a gyrotron with a reflection are compared. The calculations were performed for the megawatt gyrotron with a frequency of 170 GHz and the operating TE mode, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences (IAP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M.Antonsen, S.Y.Cai, and G. S.Nusinovich, Phys. Fluids B: Plasma Phys., 4, No. 12, 4131–4139 (1992). https://doi.org/https://doi.org/10.1063/1.860320

    Article  Google Scholar 

  2. A. Grudiev, J. Jelonnek, and K. Schünemann, Phys. Plasmas, 8, No. 6, 2963–2973 (2001). https://doi.org/https://doi.org/10.1063/1.1366330

    Article  ADS  Google Scholar 

  3. M.Yu.Glyavin, V.E. Zapevalov, and M. L. Kulygin, Radiophys. Quantum Electron., 41, No. 12, 1616–1622 (1998). https://doi.org/https://doi.org/10.1007/BF02676510

    Article  Google Scholar 

  4. N. S. Ginzburg, M.Yu.Glyavin, N.A. Zavol’skii, et al., Tech. Phys. Lett., 24, No. 6, 436–438 (1998). https://doi.org/10.1134/1.1262164

  5. M.Yu.Glyavin and V.E. Zapevalov, Radiophys. Quantum Electron., 41, No. 10, 916–922 (1998). https://doi.org/https://doi.org/10.1007/BF02676460

    Article  ADS  Google Scholar 

  6. M.Yu.Glyavin, V. E. Zapevalov, A.N.Kuftin, and A.G. Luchinin, Radiophys. Quantum Electron., 43, No. 5, 396–399 (2000). https://doi.org/https://doi.org/10.1007/BF02677156

    Article  ADS  Google Scholar 

  7. O.Dumbrajs, T. Idehara, S.Watanabe, et al., IEEE Trans. Plasma Sci., 32, No. 3, 899–902 (2004). https://doi.org/10.1109/TPS.2004.827596

  8. O.Dumbrajs, G. S.Nusinovich, and B. Piosczyk, Phys. Plasmas, 11, No. 12, 5423–5429. https://doi.org/10.1063/1.1810161

  9. O.Dumbrajs, M.Yu.Glyavin, V.E.Zapevalov, and N.A. Zavolsky, IEEE Trans. Plasma Sci., 28, No. 3, 588–596 (2000). https://doi.org/https://doi.org/10.1109/27.887680

    Article  ADS  Google Scholar 

  10. E. Borie and Jödicke, Int. J. Infrared Millimeter Waves, 11, No. 2, 243–250 (1990). https://doi.org/10.1007/BF01010518

  11. G. Gantenbein, E.Borie, G.Dammertz, et al., IEEE Trans. Plasma Sci., 22, No. 5, 861–870 (1994). https://doi.org/10.1109/27.338301

  12. M. M. Melnikova and N. M. Ryskin, Phys. Plasmas, 29, No. 1, Art. no. 013104. https://doi.org/10.1063/5.0071210

  13. N. Kharchev, A.Cappa, D.Malakhov, et al., J. Infrared, Millimeter, Terahertz Waves, 36, No. 12, 1145–1156 (2015). https://doi.org/10.1007/s10762-015-0206-0

  14. M.Yu.Glyavin, G.G.Denisov, M. L.Kulygin, et al., Radiophys. Quantum Electron., 58, No. 9, 673–683 (2016). https://doi.org/10.1007/s11141-016-9639-0

  15. M.Yu.Glyavin, G.G.Denisov, M. L.Kulygin, and Yu.V.Novozhilova, Tech. Phys. Lett., 41, No. 7, 25–32 (2015). https://doi.org/https://doi.org/10.1134/S106378501507007X

    Article  Google Scholar 

  16. Yu.V.Novozhilova, G.G.Denisov, M.Yu.Glyavin, et al., Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 25, No. 1, 4–34 (2017).

  17. I. V. Zotova, N. S.Ginzburg, G. G. Denisov, et al., Radiophys. Quantum Electron., 58, No. 9, 684–693 (2016). https://doi.org/https://doi.org/10.1007/s11141-016-9640-7

    Article  ADS  Google Scholar 

  18. I.V.Zotova, G.G.Denisov, N. S.Ginzburg, et al., Phys. Plasmas, 25, 013104 (2018). https://doi.org/10.1063/1.5008666

  19. M.Yu.Glyavin, I.Ogawa, I.V. Zotova, et al., IEEE Trans. Plasma Sci., 46, No. 7, 2465–2469 (2018). https://doi.org/https://doi.org/10.1109/TPS.2018.2797480

    Article  ADS  Google Scholar 

  20. A. A. Bogdashov, M.Yu.Glyavin, R.M.Rozental’, et al., Tech. Phys. Lett., 44, No. 3, 221–224 (2018). https://doi.org/10.1134/S1063785018030069

  21. A. A. Bogdashov, A.P. Fokin, M. Y. Glyavin, et al., J. Infrared, Millimeter, Terahertz Waves, 41, No. 2, 164–170 (2020). https://doi.org/10.1007/s10762-019-00655-4

  22. M. M. Melnikova, A. V.Tyshkun, and N.M.Ryskin, J. Infrared, Millimeter, Terahertz Waves, 42, No. 4, 446–461 (2021). https://doi.org/https://doi.org/10.1007/s10762-021-00768-9

    Article  Google Scholar 

  23. E. M.Khutoryan, T. Idehara, M. M. Melnikova, et al., J. Infrared, Millimeter, Terahertz Waves, 38, No. 7, 824–837 (2017). https://doi.org/10.1007/s10762-017-0378-x

  24. R. M.Rozental’, I. V. Zotova, M.Yu. Glyavin, et al., Radiophys. Quantum Electron., 63, No. 5, 363–370 (2020). https://doi.org/10.1007/s11141-021-10061-3

  25. D. D. Murakami and K. L.Parkin, Proc. 48th AIAA/ASME/SAE/ASEE Joint Propuls. Conf. Exhibit. 30 July 2012–01 August 2012, Atlanta, USA, Art. no. 3741. https://doi.org/10.2514/6.2012-3741

  26. M. A. Moiseev and G. S.Nusinovich, Radiophys. Quantum Electron., 17, No.11, 1305–1311 (1974). https://doi.org/https://doi.org/10.1007/BF01042032

    Article  ADS  Google Scholar 

  27. B. Levush and T.M.Antonsen, IEEE Trans. Plasma Sci., 18, No. 3, 260–272 (1990). https://doi.org/https://doi.org/10.1109/27.55895

    Article  ADS  Google Scholar 

  28. G. S.Nusinovich, IEEE Trans. Plasma Sci., 27, No. 2, 313–326 (1999). https://doi.org/https://doi.org/10.1109/27.772257

    Article  ADS  Google Scholar 

  29. V. L. Bakunin, G. G. Denisov, N.A. Zavol’sky, M.A.Moiseev, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 20, No. 6, 67–81 (2012).

  30. A.V. Chirkov, G. G. Denisov, and A.N.Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015). https://doi.org/10.1063/1.4923269

  31. M. Glyavin, V. Zapevalov, T. Idehara, et al., Int. J. Infrared Millimeter Waves, 24, No. 4, 409–418 (2003). https://doi.org/https://doi.org/10.1023/A:1022403627410

    Article  Google Scholar 

  32. A. Fokin, M. Glyavin, G. Golubiatnikov, et al., Scientific Reports, 8, No. 1, 4317. https://doi.org/10.1038/s41598-018-22772-1

  33. G.Taddia, M. Pretelli, L.Rinaldi, et al., Proc. FEL 2006. August 27–September 1, 2006, Berlin, Germany, pp. 633–636.

  34. O.Dumbrajs and G. S.Nusinovich, Phys. Plasmas, 4, No. 5, 1413–1423 (1997). https://doi.org/https://doi.org/10.1063/1.872345

    Article  ADS  Google Scholar 

  35. G. S.Nusinovich and O.Dumbrajs, Phys. Plasmas, 4, No. 5, 1424–1433 (1997). https://doi.org/https://doi.org/10.1063/1.872317

    Article  ADS  Google Scholar 

  36. V. L. Bakunin, G. G. Denisov, and Yu.V.Novozhilova, Radiophys. Quantum Electron., 63, Nos. 5–6, 392–402 (2020). https://doi.org/https://doi.org/10.1007/s11141-021-10064-0

    Article  ADS  Google Scholar 

  37. G. S.Nusinovich and O.Dumbrajs, J. Infrared, Millimeter, Terahertz Waves, 37, No. 1, 111–122 (2015). https://doi.org/https://doi.org/10.1007/s10762-015-0192-2

    Article  Google Scholar 

  38. V. L. Bakunin, G. G. Denisov, and Yu.V.Novozhilova, Radiophys. Quantum Electron., 62, Nos. 7–8, 490–505 (2019). https://doi.org/https://doi.org/10.1007/s11141-020-09995-x

    Article  ADS  Google Scholar 

  39. Yu.V.Novozhilova, N.M.Ryskin, and S.A.Usacheva, Tech. Phys., 56, No. 9, 1235–1242 (2011). https://doi.org/https://doi.org/10.1134/S1063784211090167

    Article  Google Scholar 

  40. E. M.Khutoryan, T. Idehara, A. N. Kuleshov, et al., J. Infrared, Millimeter, Terahertz Waves, 36, No. 12, 1157–1163 (2015). https://doi.org/10.1007/s10762-015-0212-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Novozhilova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 8, pp. 621–633, August 2022. Russian https://doi.org/10.52452/00213462_2022_65_08_621

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakunin, V.L., Denisov, G.G., Kuftin, A.N. et al. Stabilization of the Radiation Frequency of a Gyrotron with a Remote Reflector Under the Conditions of Interaction of the Equidistant-Spectrum Modes. Radiophys Quantum El 65, 566–577 (2023). https://doi.org/10.1007/s11141-023-10237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10237-z

Navigation