Skip to main content
Log in

Influence of Spatial Losses of the Signal Detected by a Single-Pixel Detector on the Quality of Object Image Reconstruction

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The reconstruction methods, which are based on compressed sensing (CS), make it possible to record and reconstruct information basing on its sparse or compressed representation. In this work, we study resistance of CS-based single-pixel imaging to partial loss of the intensity of the recorded radiation from an object with a limited area of the detector. The problem was solved experimentally by implementing the so-called single-pixel camera, as well as detecting optical radiation from the object and reconstructing its image with the use of CS methods. The method resistance to spatial radiation losses is estimated as a function of the size and shape of the detector aperture. The quality of image reconstruction depending on the two following factors is assessed: the fraction of the intensity of the detected radiation and the quantity of single-pixel detections. The results can ensure significantly wider application of the method to reconstruct data, both detected in dynamic and scattering media (including the introduction of various apertures and Fourier filtering) and in the case of significant spatial radiation losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Burlington: Academic (2009). https://doi.org/https://doi.org/10.1016/B978-0-12-374370-1.X0001-8

  2. R. Lukac, Computational Photography: Methods and Applications, Boca Raton: CRC Press (2016).

    Book  Google Scholar 

  3. E. J.Cand’es and M.B.Wakin, IEEE Signal Proc. Mag., 25, No., 2, 21–30 (2008). https://doi.org/https://doi.org/10.1109/MSP.2007.914731

  4. M. Rani, S.B.Dhok, and R.B. Deshmukh, IEEE Access, 6, 4875–4894 (2018). https://doi.org/https://doi.org/10.1109/ACCESS.2018.2793851

  5. F. Zhang, X. Liang, R.Cheng, et al., IEEE Geosci. Remote Sen. Lett., 17, No. 3, 446–450 (2020). https://doi.org/https://doi.org/10.1109/LGRS.2019.2926301

  6. C. M.Watts, D. Shrekenhamer, J.Montoya, et al., Nat. Photon., 8, 605–609 (2014). https://doi.org/https://doi.org/10.1038/nphoton.2014.139

  7. M. F. Duarte, M.A.Davenport, D.Takhar, et al., IEEE Signal Proc. Mag., 25, 83–91 (2008). https://doi.org/https://doi.org/10.1109/MSP.2007.914730

  8. W. Zhang, L.Cao, D. J. Brady, et al., Phys. Rev. Lett., 121, No. 9, 093902 (2018). https://doi.org/https://doi.org/10.1103/PhysRevLett.121.093902

  9. M.P. Edgar, G.M.Gibson, and M. J.Padgett, Nat. Photon., 13, No. 1, 13–20 (2019). https://doi.org/https://doi.org/10.1038/s41566-018-0300-7

  10. M.-J. Sun, M. P. Edgar, G.M.Gibson, et al., Nat. Commun., 7, 12010 (2016). https://doi.org/https://doi.org/10.1038/ncomms12010

  11. V.G. Rodin, Komp. Optika, 42, No. 3, 347–353 (2018). https://doi.org/10.18287/2412-6179-2018-42-3-347-353

    Article  ADS  Google Scholar 

  12. I. N.Kompanets and A. L. Andreev, Quantum Electron., 47, No. 4, 294 (2017). https://doi.org/https://doi.org/10.1070/QEL16293

  13. M. N.Kulakov, R. S. Starikov, and P. A.Cheremkhin, KnE Energy, 3, No. 3, 509–522 (2018). https://doi.org/10.18502/ken.v3i3.2065

    Article  Google Scholar 

  14. N. Gopalsami, S. Liao, T. W. Elmer, et al., Opt. Eng., 51, No. 9, 091614 (2012). https://doi.org/https://doi.org/10.1117/1.OE.51.9.091614

  15. M.Kowalski, M. Piszczek, M. Szustakowski, and W.Ciurapinski, in: Proc. 23rd DAAAM Int. Symp. Intelligent Manufacturing Automation 2012. Zadar, Croatia, 24–27 October 2012, 1, 309-312 (2012).

  16. E.Tajahuerce, V. Duran, P.Clemente, et al., Opt. Express., 22, 16945–16955 (2014). https://doi.org/https://doi.org/10.1364/OE.22.016945

  17. V.Duran, F. Soldevila, E. Irles, et al., Opt. Express, 23, 14424–14433 (2015). https://doi.org/https://doi.org/10.1364/OE.23.014424

  18. M. A. Neifeld and J.Ke, Appl. Opt., 46, No. 22, 5293–5303 (2007). https://doi.org/https://doi.org/10.1364/AO.46.005293

  19. Y. Juregui-S’anchez, P.Clemente, J. Lancis, and E.Tajahuerce, Opt. Lett., 44, No. 3, 679–682 (2019). https://doi.org/https://doi.org/10.1364/OL.44.000679

  20. Y. Jauregui-S’anchez, P.Clemente, P. Latorre-Carmona, et al., Appl. Opt., 57, No. 7, B67–B73 (2018). https://doi.org/https://doi.org/10.1364/AO.57.000B67

  21. M.Wenwen, S.Dongfeng, and H. Jian, Opt. Express, 27, No. 22, 31490–31503 (2019). https://doi.org/https://doi.org/10.1364/OE.27.031490

  22. W. Huang, L. Xiao, H. Liu, and Z.Wei, Sensors, 15, No. 1, 2041–2058 (2015). https://doi.org/https://doi.org/10.3390/s150102041

  23. P. Wijesinghe, A. Escobet-Montalbán, M. Chen, et al., Opt. Lett., 44, No. 20, 4981–4984 (2019). https://doi.org/https://doi.org/10.1364/OL.44.004981

  24. Q. Z.Wang, X. Liang, L.Wang, et al., Opt. Lett., 20, 1498–1500 (1995). https://doi.org/https://doi.org/10.1364/OL.20.001498

  25. E.Berrocal, S. G. Pettersson, and E.Kristensson, Opt. Lett., 41, 5612–5615 (2016). https://doi.org/https://doi.org/10.1364/OL.41.005612

  26. M. V. Afonso, J.M.Bioucas-Dias, and M.A.T. Figueiredo, IEEE Trans. Image Proc., 19, 2345–2356 (2010). https://doi.org/https://doi.org/10.1109/TIP.2010.2047910

  27. N. N. Evtikhiev, V. V.Krasnov, I. D.Kuzmin, et al., Quantum Electron., 50, No. 2, 195 (2020). https://doi.org/https://doi.org/10.1070/QEL17139

  28. I. S. Gibin, V. I.Kozik, and E.S.Nezhevenko, Optoelectr. Instr. Data Proc., 56, No. 1, 1–9 (2020). https://doi.org/https://doi.org/10.3103/S875669902001001X

  29. D.Yu.Molodtsov, P.A.Cheremkhin, V.V. Krasnov, V.G. Rodin, J. Phys: Conf. Series, 737, 012074 (2016). https://doi.org/https://doi.org/10.1088/1742-6596/737/1/012074

  30. Z. Zhang, X. Ma, and J. Zhong, Nat. Commun., 6, 6225 (2015). https://doi.org/https://doi.org/10.1038/ncomms7225

  31. I. A. Shaikin, Radiophys. Quantum Electron., 61, No. 12, 924–929 (2019). https://doi.org/https://doi.org/10.1007/s11141-019-09948-z

  32. D. Salomon and G. Motta, Handbook of Data Compression, Springer-Verlag, London (2010).

    Book  Google Scholar 

  33. Q. Chen, D. J.Chen, J.Gong, and J. Ruan, Entropy, 22, 125 (2020). https://doi.org/https://doi.org/10.3390/e22010125

  34. P. A. Cheremkhin and E.A.Kurbatova, Opt. Laser. Eng., 115, 119–130 (2019). https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.11.019

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 8, pp. 646–657, January 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakov, M.N., Rodin, V.G., Starikov, R.S. et al. Influence of Spatial Losses of the Signal Detected by a Single-Pixel Detector on the Quality of Object Image Reconstruction. Radiophys Quantum El 63, 582–591 (2021). https://doi.org/10.1007/s11141-021-10081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10081-z

Navigation