Skip to main content
Log in

Development of the Concept of High-Power Microwave Oscillators with Phase Locking by an External Signal

  • Published:
Radiophysics and Quantum Electronics Aims and scope

By simulations and experiments we develop a method for generation phase locking of a Ka-band subgigawatt nonstationary relativistic backward-wave oscillator (BWO) with an external radio pulse, the duration of which is considerably greater than the pulse duration of a driven BWO. The level of input power (about 20 kW), which provided phase locking with a total spread of about 1.2 rad, is determined both for the case of competition with an electromagnetic disturbance from a steep front of the beam current and the case of a slow current rise without phase locking in the self-excitation mode. The phase locking effect is achieved with a significant difference in the frequencies of the external radio pulse and driven BWO (about 1 GHz) and hence differs from the amplification mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. El’chaninov, A. I.Klimov, O.B.Kovalchuk, et al., Tech. Phys., 56, No. 1, 121 (2011).

    Article  Google Scholar 

  2. K. A. Sharypov, A. A. Elchaninov, G.A.Mesyats, et al., Appl. Phys. Lett., 103, 134103 (2013).

    Article  ADS  Google Scholar 

  3. V. V. Rostov, A.A.Elchaninov, A. I.Klimov, et al., IEEE Trans. Plasma Sci., 41, No. 10, 2735 (2013).

    Article  ADS  Google Scholar 

  4. N. S. Ginzburg, A. W.Cross, A. A. Golovanov, et al., Phys. Rev. Lett., 115, 114802 (2015).

    Article  ADS  Google Scholar 

  5. N. S. Ginzburg, A. W.Cross, A. A. Golovanov, et al., IEEE Trans. Plasma Sci., 44, No. 4, 377 (2016).

    Article  ADS  Google Scholar 

  6. S. H. Gold and G. S.Nusinovich, Rev. Sci. Instrum., 68, No. 11, 3945 (1997).

    Article  ADS  Google Scholar 

  7. S. H. Gold, D. L.Hardesty, A.K.Kinkead, et al., Phys. Rev. Lett., 52, No. 14, 1218 (1984).

    Article  ADS  Google Scholar 

  8. T. J. Orzechowski, B.R.Anderson, W.M. Fawley, et al., Phys. Rev. Lett., 54, No. 9, 889 (1985).

    Article  ADS  Google Scholar 

  9. V. L. Bratman, A. W.Cross, G. G. Denisov, et al., Phys. Rev. Lett., 84, No. 12, 2746 (2000).

    Article  ADS  Google Scholar 

  10. R. Z. Xiao, C. H.Chen, W. Song, et al., J. Appl. Phys., 110, No. 1, 013301 (2011).

    Article  ADS  Google Scholar 

  11. K. V. Afanas’ev, N. M. Bykov, V. P. Gubanov, et al., Tech. Phys. Lett., 32, No. 11, 925 (2006).

    Article  ADS  Google Scholar 

  12. A.A. Eltchaninov, S.D. Korovin, G.A.Mesyats, et al., IEEE Trans. Plasma Sci., 32, No. 3, 1093 (2004).

    Article  ADS  Google Scholar 

  13. V.V. Rostov, A.A.Elchaninov, I.V. Romanchenko, and M. I.Yalandin, Appl. Phys. Lett., 100, No. 22, 224102 (2012).

    Article  ADS  Google Scholar 

  14. V.V. Rostov, A.A.Elchaninov, I.V. Romanchenko, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 475 (2013).

    ADS  Google Scholar 

  15. G. A. Mesyats, N. S. Ginzburg, A. A. Golovanov, et al., Phys. Rev. Lett., 118, No. 26, 264801 (2017).

    Article  ADS  Google Scholar 

  16. N. S.Ginzburg, A.A.Golovanov, I.V. Romanchenko, et al., J. Appl. Phys., 124, No. 12, 123303 (2018).

    Article  ADS  Google Scholar 

  17. W. Song, J. Sun, H. Shao, et al., J. Appl. Phys., 111, No. 2, 023302 (2012).

    Article  ADS  Google Scholar 

  18. Y.Teng, W. Song, J. Sun, et al., J. Appl. Phys., 111, No. 4, 043303 (2012).

    Article  ADS  Google Scholar 

  19. V.P.Tarakanov, User’s Manual for Code KARAT, Berkeley Research Associates, Inc., Springfield (1992).

    Google Scholar 

  20. V. V. Rostov, I.V.Romanchenko, A.A. Elchaninov, et al., Phys. Plasmas, 23, No. 8, 083111 (2016).

    Article  ADS  Google Scholar 

  21. K. A. Sharypov, V. V. Rostov, A.G. Sadykova, et al., Appl. Phys. Lett., 113, No. 22, 223502 (2018).

    Article  Google Scholar 

  22. E.B.Abubakirov, A.N.Denisenko, A. P.Konyushkov, et al., Radiophys. Quantum Electron., 57, No. 5, 372 (2014).

    Article  ADS  Google Scholar 

  23. V.G. Shpak, S.A. Shunailov, M. I.Yalandin, et al., Prib. Tekh. Eksp., No. 1, 149 (1993).

  24. S. D.Korovin, E. A. Litvinov, G.A.Mesyats, et al., Tech. Phys. Lett., 30, No. 10, 30 (2004).

    Article  Google Scholar 

  25. I.V. Romanchenko, V.V. Rostov, V.P.Gubanov, et al., Rev. Sci. Instr., 83, No. 7, 074705 (2012).

    Article  ADS  Google Scholar 

  26. A. G. Reutova, M. R. Ulmasculov, A.K. Sharypov, et al., JETP Lett., 82, No. 5, 263 (2005).

    Article  ADS  Google Scholar 

  27. N. S. Ginzburg, S.P.Kuznetsov, and T.N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Yalandin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 7–8, pp. 499–507, July–August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharypov, K.A., Shunailov, S.A., Ginzburg, N.S. et al. Development of the Concept of High-Power Microwave Oscillators with Phase Locking by an External Signal. Radiophys Quantum El 62, 447–454 (2019). https://doi.org/10.1007/s11141-020-09990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-09990-2

Navigation