Skip to main content
Log in

Model of an Injection Semiconductor Quantum-Dot Laser

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose an asymmetric electron–hole model of an injection semiconductor quantum-dot laser, which correctly allows for relaxation at transitions between the electron and hole levels. Steady-state solutions of the proposed model, conditions for the simultaneous operation at transitions between the ground and first excited state levels, and relaxation oscillations in the two-wave lasing regime are studied. It is shown that the model can be simplified when the relaxation between hole levels is much faster than the relaxation between electron levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.Bimberg, M.Grundmann, and N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, New York (1999).

  2. Zh. I. Alferov, Usp. Fiz. Nauk, 172, 1068 (2002).

    Article  Google Scholar 

  3. A. E. Zhukov, M.V.Maksimov, and A. R. Kovsh, Semiconductors, 46, 1235 (2012).

    ADS  Google Scholar 

  4. A. Markus, J. X. Chen, C. Paranthoen, et al., Appl. Phys. Lett., 82, 1818 (2003).

    Article  ADS  Google Scholar 

  5. M. Abusaa, J. Danckaert, E. A. Viktorov, and T. Erneux, Phys. Rev. A, 87, 063827 (2013).

    Article  ADS  Google Scholar 

  6. I. V.Koryukin, Phys. Rev. A, 92, 043840 (2015).

    Article  ADS  Google Scholar 

  7. E. A. Viktorov, P. Mandel, Y. Tanguy, et al., Appl. Phys. Lett., 87, 053113 (2005).

    Article  ADS  Google Scholar 

  8. L. Drzewietzki, G.P.A.Thé, M.Gioannini, et al., Opt. Commun., 283, 5092 (2010).

    Article  ADS  Google Scholar 

  9. M. A. Cataluna, W. Sibbett, D. A. Livshits, et al., Appl. Phys. Lett ., 89, 081124 (2006).

    Article  ADS  Google Scholar 

  10. M. A.Cataluna, D. Nikitichev, S. Mikroulis, et al., Opt. Exp., 18, 12832 (2010).

    Article  ADS  Google Scholar 

  11. E. A. Viktorov, P. Mandel, I.O’Driscoll, et al., Opt. Lett., 31, 2302 (2006).

  12. A. Markus, M.Rossetti, V.Calligari, et al., J. Appl. Phys., 100, 113104 (2006).

    Article  ADS  Google Scholar 

  13. Y. Kaptan, H. Schmeckebier, B. Herzog, et al., Appl. Phys. Lett ., 104, 261108 (2014).

    Article  ADS  Google Scholar 

  14. M. Virte, S. Breuer, M. Sciamanna, and K. Panajotov, Appl. Phys. Lett., 105, 121109 (2014).

    Article  ADS  Google Scholar 

  15. J. L.T.Waugh and G. Dolling, Phys. Rev., 132, 24106 (1963).

    Article  Google Scholar 

  16. Electronic archive “New Semiconductor Materials. Characteristics and Properties.” http://www.ioffe.ru/SVA/NSM.

  17. P. A. Khandokhin, P. Mandel, I. V. Koryukin, et al., Radiophys. Quantum Electron., 40, Nos. 1–2, 103 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Koryukin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 11, pp. 993–1001, November 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koryukin, I.V. Model of an Injection Semiconductor Quantum-Dot Laser. Radiophys Quantum El 60, 889–896 (2018). https://doi.org/10.1007/s11141-018-9855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9855-x

Navigation