Skip to main content
Log in

Localized Superconductivity in Systems with Inhomogeneous Mass of Cooper Pairs

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Within the framework of the Ginzburg–Landau theory, we study the features of the localized nucleation of the order parameter in superconducting systems with inhomogeneous effective mass m of the Cooper pairs, which is due to the spatial modulation of the diffusion coefficient and/or fluctuations in the local anisotropy axis in the sample. In the asymptotics of the weak magnetic fields H, for which the magnetic length [Φ0/(2πH)]1/2, where Φ0 is the magnetic-flux quantum, is much shorter than the inhomogeneity scale, the spatial scale of the order parameter is determined by the sample-average coherence length and the regular lattice of the Abrikosov vortices is formed in the superconductor. In sufficiently strong magnetic fields H, the order parameter is localized near the minima of the coherence length ξm −1/2, which results in an increase in the critical temperature and destruction of the regular lattice of the Abrikosov vortices. Therefore, competition between the two superconductivity-nucleation types is observed during a gradual increase in the magnetic field, which leads to the positive curvature of the phase-transition line. We have also studied the features of the temperature dependences of the upper critical magnetic field for some model spatial mass profiles of the Cooper pairs. The obtained results are in good agreement with direct numerical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, Fundamentals of the Theory of Metals, North-Holland, New York (1988).

    Google Scholar 

  2. D. Saint-James and P.G. de Gennes, Phys. Lett., 7, 306 (1963).

    Article  ADS  Google Scholar 

  3. E.V. Minenko and I. O. Kulik, Fiz. Nizk. Temp., 5, No. 11, 1237 (1979).

    Google Scholar 

  4. J. R. Hauser, J. S.-Y. Wang, and C. Kittel, Phys. Lett., 47A, 34 (1974).

    Article  ADS  Google Scholar 

  5. Yu.N. Ovchinnikov, Sov. Phys. JETP, 52, No. 4, 755 (1980).

    ADS  Google Scholar 

  6. V. I. Rud’ko and V. I. Sugakov, Fiz. Nizk. Temp., 9, No. 4, 440 (1983).

    Google Scholar 

  7. I. N. Khlustikov and A. I. Buzdin, Sov. Phys. Uspekhi, 31, 409 (1988).

    Article  ADS  Google Scholar 

  8. Yu.V. Kopaev, Sov. Phys. Solid State, 7, 2360 (1966).

    Google Scholar 

  9. A. I. Buzdin, L.N. Bulaevskii, and S.V. Panyukov, Sov. Phys. JETP, 60, No. 1, 174 (1984).

    Google Scholar 

  10. A. I. Buzdin and A. S. Mel’nikov, Phys. Rev. B, 67, 020503(R) (2003).

    Article  ADS  Google Scholar 

  11. A.Yu. Aladyshkin, A. I. Buzdin, A.A. Fraerman, et al., Phys. Rev. B, 68, 184508 (2003).

    Article  ADS  Google Scholar 

  12. A.Yu. Rusanov, M. Hesselberth, J. Aarts, and A. I. Buzdin, Phys. Rev. Lett., 93, 057002 (2004).

    Article  ADS  Google Scholar 

  13. Z. Yang, M. Lange, A. Volodin, et al., Nat. Mater., 3, 793 (2004).

    Article  ADS  Google Scholar 

  14. A.Yu. Aladyshkin, A. S. Mel’nikov, I.M. Nefedov, et al., Phys. Rev. B, 85, 184528 (2012).

    Article  ADS  Google Scholar 

  15. A. Houghton and F.B. McLean, Phys. Lett., 19, 172 (1965).

    Article  ADS  Google Scholar 

  16. A.P. van Gelder, Phys. Rev. Lett., 20, 1435 (1968).

    Article  ADS  Google Scholar 

  17. A.Yu. Simonov, A. S. Mel’nikov, and S. V. Sharov, Fiz. Nizk. Temp., 15, No. 11, 1206 (1989).

    Google Scholar 

  18. V. M. Fomin, J.T. Devreese, and V.V. Moshchalkov, Europhys. Lett., 42, 553 (1998).

    Article  ADS  Google Scholar 

  19. F. Brosense, V.M. Fomin, J.T. Devreese, V. V. Moshchalkov, Solid State Commun., 144, 494 (2007).

    Article  ADS  Google Scholar 

  20. S. N. Klimin, V.M. Fomin, J.T. Devreese, and V.V. Moshchalkov, Solid State Commun., 111, 589 (1999).

    Article  ADS  Google Scholar 

  21. V. A. Schweigert and F.M. Peeters, Phys. Rev. B, 60, 3084 (1999).

    Article  ADS  Google Scholar 

  22. V. Bonnaillie-Noel, Compt. Rend. Mathem., 336, 135 (2003).

    Article  Google Scholar 

  23. V. Bonnaillie-Noel, Asympt. Anal., 41, 215 (2005).

    Google Scholar 

  24. V. Bonnaillie-Noel and M. Dauge, Ann. Henry Poincaré, 7, 899 (2006).

    Article  ADS  Google Scholar 

  25. E. Helfand and N. R. Werthamer, Phys. Rev. Lett., 13, 686 (1964).

    Article  ADS  Google Scholar 

  26. E. Helfand and N. R. Werthamer, Phys. Rev., 147, 288 (1966).

    Article  ADS  Google Scholar 

  27. M. S. Osofsky, R. J. Soulen, S.A. Wolf, et al., Phys. Rev. Lett., 71, 2315 (1993).

    Article  ADS  Google Scholar 

  28. A. Gurevich, S. Patnaik, V. Braccini, et al., Supercond. Sci. Technol., 17, 278 (2004).

    Article  ADS  Google Scholar 

  29. V. Braccini, A. Gurevich, J.E. Giencke, et al., Phys. Rev. B, 71, 012504 (2005).

    Article  ADS  Google Scholar 

  30. F. Hunte, J. Jaroszynski, A. Gurevich, et al., Nature, 453, 903 (2008).

    Article  ADS  Google Scholar 

  31. J. Jaroszynski, F. Hunte, L. Balicas, et al., Phys. Rev. B, 78, 174523 (2008).

    Article  ADS  Google Scholar 

  32. H. S. Lee, M. Bartkowiak, J.H. Park, et al., Phys. Rev. B, 80, 144512 (2009).

    Article  ADS  Google Scholar 

  33. L. N. Bulaevskii and M.V. Sadovskii, J. Low Temp. Phys., 59, 89 (1985).

    Article  ADS  Google Scholar 

  34. G. Kotliar and A. Kapitulnik, Phys. Rev. B, 33, 3146 (1986).

    Article  ADS  Google Scholar 

  35. S. Takahashi and M. Tachiki, Phys. Rev. B, 33, 4620 (1986).

    Article  ADS  Google Scholar 

  36. L. B. Ioffe and A. I. Larkin, Sov. Phys. JETP, 54), No. 2, 378 (1981).

  37. G.E. Zwicknagl and J.W. Wilkins, Phys. Rev. Lett., 53, 1276 (1984).

    Article  ADS  Google Scholar 

  38. E. V. Thuneberg, J. Low Temp. Phys., 62, 27 (1986).

    Article  ADS  Google Scholar 

  39. B. Spivak and Fei Zhou, Phys. Rev. Lett., 74, 2800 (1995).

  40. V. M. Galitski and A. I. Larkin, Phys. Rev. Lett., 87, 087001 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kopasov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 11, pp. 1017–1029, November 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopasov, A.A., Savinov, D.A. & Mel’nikov, A.S. Localized Superconductivity in Systems with Inhomogeneous Mass of Cooper Pairs. Radiophys Quantum El 59, 911–921 (2017). https://doi.org/10.1007/s11141-017-9761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9761-7

Navigation