Skip to main content
Log in

Generators of High-Power Ultrashort Microwave Pulses with a Saturable Absorber in a Feedback Circuit

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study theoretically the mechanism of the formation of high-power ultrashort microwave pulses, which is based on the effect of passive mode locking in electron generators, whose feedback circuit includes a nonlinear saturable absorber (amplitude filter). The mechanism under consideration is an analog of the well-known method of generation of ultrashort pulses, which is used widely in laser physics. Nevertheless, realization of this method in electron generators has certain specific features connected with the motion of the active medium (electron flow). It is shown that being applied to vacuum electronics, this method is sufficiently universal, and various types of both relativistic and subrelativistic amplifiers operated in wavelength ranges from the centimeter to submillimeter ones can be used for actualization of ultrashort pulse generators as active elements. In the additional section, which acts as a saturable absorber, one can use either the Kompfner absorption effect, or the effect of cyclotron resonance absorption of radiation by a rectilinear electron beam. It is demonstrated on the basis of numerical simulation that the peak power of ultrashort pulses in electron generators with passive mode locking can exceed the power achieved in the stationary generation regimes significantly and, in some cases, the power of the electron flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Herrmann and B. Wilhelmi, Lasers for Ultrashort Light Pulses, Elsevier Science (1987).

  2. H. A. Haus, IEEE J. Select. Topics Quant. Electron., 6, No. 6, 1173 (2000).

    Article  Google Scholar 

  3. T. Brabec, F.Krausz, Rev. Mod. Phys., 72, No. 2, 545 (2000).

    Article  ADS  Google Scholar 

  4. P. G. Kryukov, Quantum Electronics, 31, No. 2, 95 (2001).

    Article  ADS  Google Scholar 

  5. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al. Tech. Phys. Lett., 41, No. 9, 836 (2015).

    Article  ADS  Google Scholar 

  6. M. N. Vilkov, N. S.Ginzburg, G. G. Denisov, et al., Radiophys. Quantum Electron., 58, No. 8, 598 (2015).

    Article  ADS  Google Scholar 

  7. N. A. Bogatov, M. S.Gitlin, A.G. Litvak, and A.G. Luchinin, Phys. Rev. Lett., 69, No. 25, 3635 (1992).

    Article  ADS  Google Scholar 

  8. N. S.Ginzburg, I.V. Zotova, and A. S. Sergeev, J. Exp. Theor. Phys., 113, No. 5, 772 (2011).

    Article  ADS  Google Scholar 

  9. V.N. Shevchik and D. I.Trubetskov, Analytical Calculation Methods in Microwave Electronics [in Russian], Sov. Radio, Moscow (1970).

    Google Scholar 

  10. V. L. Bratman, N. S. Ginzburg, N. F.Kovalev, et al., in: Relativistic High-Frequency Electronics, Inst. Appl. Phys. RAS, Gorky (1979), p. 249.

  11. N. S.Ginzburg and A. S. Sergeev, Zh. Tekh. Fiz., 61, No. 6, 133 (1991).

    Google Scholar 

  12. N. Akhmediev and A. Ankevich, Dissipative Solitons [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  13. N. S.Ginzburg, I.V. Zotova, and A. S. Sergeev, Pis’ma Zh. Tekh. Fiz., 25, No. 12, 930 (1999).

    Google Scholar 

  14. M. I.Yalandin, A. G. Reutova, M. R. Ul’maskulov, et al., JETP Lett., 91, No. 11, 553 (2010).

    Article  ADS  Google Scholar 

  15. L. Schachter, J. A. Nation and D.A. Shiffler, J. Appl. Phys., 70, No. 1, 114 (1991).

    Article  ADS  Google Scholar 

  16. D. A. Shiffler, J. A. Nation, and G. S.Kerslick, IEEE Trans. Plasma Sci., 18, No. 3, 546 (1990).

    Article  ADS  Google Scholar 

  17. E.B.Abubakirov, A.N.Denisenko, M. I.Fuks, et al., IEEE Trans. Plasma Sci., 30, No. 3, 1041 (2002).

    Article  ADS  Google Scholar 

  18. N. S. Ginzburg, S.P.Kuznetsov, and T.N. Fedoseeva, Radiophys. Quantum Electron., 21, No. 7, 728 (1978).

    Article  ADS  Google Scholar 

  19. A. A. Elchaninov, S.D.Korovin, V.V.Rostov, et al., JETP Lett., 77, No. 6, 266 (2003).

    Article  ADS  Google Scholar 

  20. S. D.Korovin, A. A. Elchaninov, V.V.Rostov, et al., Phys. Rev. E, 74, No. 1, 016501-1 (2006).

    Article  ADS  Google Scholar 

  21. G. G. Denisov and S. J.Cooke, in: Digest 21 st Int. Conf. Infrared and Millimeter Waves, Berlin 14–19 July 1996, p.AT2.

  22. G. G. Denisov, V. L.Bratman, and A. W.Cross, Phys. Rev. Lett., 81, No. 25, 5680 (1998).

    Article  ADS  Google Scholar 

  23. S. V. Samsonov, I.G.Gachev, G. G. Denisov, et al., IEEE Trans. Electron Devices, 61, 4264 (2014).

    Article  ADS  Google Scholar 

  24. N. S.Ginzburg, I.V. Zotova, A. S. Sergeev, et al., Phys. Plasmas, 22, No. 12, 113111-1 (2014).

    ADS  Google Scholar 

  25. N. S.Ginzburg, G. S.Nusinovich, and N.A. Zavolsky, Int. J. Electron., 61, No. 6, 881 (1986).

    Article  Google Scholar 

  26. A. V. Gaponov, M. I. Petelin, and V.K.Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Ginzburg.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 8–9, pp. 680–697, August–September 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, N.S., Denisov, G.G., Abubakirov, E.B. et al. Generators of High-Power Ultrashort Microwave Pulses with a Saturable Absorber in a Feedback Circuit. Radiophys Quantum El 59, 613–628 (2017). https://doi.org/10.1007/s11141-017-9728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-017-9728-8

Navigation