Skip to main content
Log in

Fractal Model of a Compact Intracloud Discharge. II. Specific Features of Electromagnetic Emission

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We examine the features of the electromagnetic emission of a compact intracloud discharge (CID) within the framework of the fractal approach [1] described in the first part of the article. Compact intracloud discharge is considered as the result of electric interaction of two bipolar streamer-type structures previously developed in the regions of a strong electric field inside the thundercloud. To estimate the electromagnetic emission of the discharge, the complex tree-like structure of the electric currents at the preliminary and main stages of CID was represented as the sum of a relatively slowly varying large-scale linear mean component and fast small-scale constituents corresponding to the initial formation of elementary conductive channels of the discharge tree. Mean linear current of the discharge is considered as an effective source of the VLF/LF emission at both the preliminary and main stages of a CID. Electrostatic, induction, and radiation components of the electric field at different distances from the mean current are calculated taking into account specific features of both stages of the discharge within the framework of the transmission-line model. It is shown that at the preliminary stage only the electrostatic component can mainly be detected, whereas at the main stage all the above components of the electric field can be reliably measured. Dependence of the radiation electric field at the main stage on the length of the discharge channel and propagation velocity of the current front is analyzed. It is found that due to the bi-directional expansion of the current at the main stage of a CID the radiation field pulse remains narrow in a wide range of discharge parameters. The small-scale currents corresponding to the initial breakdown between the neighboring cells of the discharge domain are considered as the sources of HF/VHF radiation. It is shown that HF/VHF emission at the preliminary stage is negligible as compared to emission at the main stage. It is also established that at the main stage, first, the HF/VHF emission burst correlates well with the initial peak of the VLF/LF electric field pulse and, second, its spectrum corresponds to the power law with an exponent between −2 and −1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Iudin and S. S. Davydenko, Radiophys. Quantum Electron., 58, No. 7, 477 (2015).

    Article  ADS  Google Scholar 

  2. D. M. Le Vine, J. Geophys. Res., 85, No. C7, 4091 (1980).

    Article  ADS  Google Scholar 

  3. J.C. Willett, J.C. Bailey, and E. P. Krider, J. Geophys. Res., 94, No. D13, 16255 (1989).

    Article  ADS  Google Scholar 

  4. D. A. Smith, X. M. Shao, D. N. Holden, et al., J. Geophys. Res., 104, No. D4, 4189 (1999).

    Article  ADS  Google Scholar 

  5. A. Nag, V. A. Rakov, D. Tsalikis, and J. A. Cramer, J. Geophys. Res., 115, D14115 (2010).

    Article  ADS  Google Scholar 

  6. S. Karunarathne, T.C. Marshall, M. Stolzenburg, and N. Karunarathna, J. Geophys. Res. Atmos., 120, 7128 (2015).

    Article  ADS  Google Scholar 

  7. W. Rison, R. J. Thomas, P.R. Krehbiel, et al., Geophys. Res. Lett., 26, No. 23, 3573 (1999).

    Article  ADS  Google Scholar 

  8. D. A. Smith, M. J. Heavner, A. R. Jacobson, et al.. Radio Sci., 39, No. 1, RS1010 (2004).

  9. K. B. Eack, Geophys. Res. Lett., 31, No. 20, L20102 (2004).

    Article  ADS  Google Scholar 

  10. W. Rison, P. R. Krehbiel, M.G. Stock, et al., Nature Commun., 7, 10721 (2016).

    Article  ADS  Google Scholar 

  11. K.C. Wiens, T. Hamlin, J. Harlin, and D. M. Suszcynsky, J. Geophys. Res., 113, D05201 (2008).

    Article  ADS  Google Scholar 

  12. A.R. Jacobson amd M. J. Heavner, Mon. Weather Rev., 133, No. 5, 1144 (2005).

  13. H. Liu, W. Dong, T. Wu, et al., J. Geophys. Res., 117, D01203 (2012).

    ADS  Google Scholar 

  14. D. N. Holden, C.P. Munson, and J.C. Devenport, Geophys. Res. Lett., 22, No. 8, 889 (1995).

    Article  ADS  Google Scholar 

  15. A. R. Jacobson, T. E. L. Light, and R. Nemzek, Ann. Geophys., 31, 563 (2013).

    Article  ADS  Google Scholar 

  16. M. A. Uman, D.K. McLain, and E. P. Krider, Am. J. Phys., 43, 33 (1975).

    Article  ADS  Google Scholar 

  17. A. Nag and V. A. Rakov, J. Geophys. Res., 115, D20103 (2010).

    Article  ADS  Google Scholar 

  18. T. Hamlin, T.E. Light, X.-M. Shao, et al., J. Geophys. Res., 112, D14108 (2007).

    Article  ADS  Google Scholar 

  19. A. Nag and V. A. Rakov, J. Geophys. Res., 115, D20102 (2010).

    Article  ADS  Google Scholar 

  20. C. L. da Silva and V.P. Pasko, J. Geophys. Res. Atmos., 120, No. 10, 4989 (2015).

    Article  ADS  Google Scholar 

  21. A. V. Gurevich, G.M. Milikh, and R. Roussel-Dupre, Phys. Lett. A, 165, 463 (1992).

    Article  ADS  Google Scholar 

  22. A. V. Gurevich, K.P. Zybin, and R. A. Roussel-Dupre, Phys. Lett. A, 254, 79 (1999).

    Article  ADS  Google Scholar 

  23. S. Arabshahi, J.R. Dwyer, A. Nag, et al., J. Geophys. Res. Space Phys., 119, 479 (2014).

    Article  ADS  Google Scholar 

  24. H.E. Tierney, R. A. Roussel-Dupre, E. M. D. Symbalisty, and W. H. Beasley, J. Geophys. Res., 110, D12109 (2005).

    Article  ADS  Google Scholar 

  25. V. Yu. Trakhtengerts, Dokl. Akad. Nauk SSSR, 308, No. 3, 584 (1989).

    Google Scholar 

  26. S. M. Lazarus, M. E. Splitt, J. Brownlee, et al., J. Geophys. Res. Atmos., 120, 8469 (2015).

    Article  ADS  Google Scholar 

  27. A. Y. Kostinskiy, V. S. Syssoev, N.A. Bogatov, et al., Geophys. Res. Lett., 42, 8165 (2015).

    Article  ADS  Google Scholar 

  28. Yu. P. Raizer, Gas Discharge Physics, Springer, Berlin (1997).

    Google Scholar 

  29. R. Rompe, W. Weizel, Zeitschrift für Physik, 122, 636 (1944).

    Article  ADS  Google Scholar 

  30. A. A. Dul’zon, V.V. Lopatin, M.D. Noskov, and O. I. Pleshkov, Tech. Phys., 44, No. 4, 394 (1999).

    Article  Google Scholar 

  31. S. Sadighi, N.Y. Liu, J. R. Dwyer, and H.K. Rassoul, J. Geophys. Res. Atmos., 120, 3660 (2015).

    Article  ADS  Google Scholar 

  32. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D: Appl. Phys., 41, No. 23, 234005 (2008).

    Article  ADS  Google Scholar 

  33. É. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection, IOP Publishing, Bristol (2000).

  34. É. M. Bazelyan and Yu. P. Raizer, Spark Discharge, CRC Press, Boca Raton (1978).

  35. V. A. Rakov, J. Lightning Res., 1, 80 (2007).

    Google Scholar 

  36. R. Thottappillil, V. Rakov, and M. Uman, J. Geophys. Res., 102, No. D6, 6987 (1997).

  37. D. M. LeVine and R. Meneghini, Radio Sci., 13, No. 5, 801 (1978).

    Article  ADS  Google Scholar 

  38. D. M. LeVine and J.C. Willett, J. Geophys. Res., 97, No. D2, 2601 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Davydenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 7, pp. 620–637, July 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydenko, S.S., Iudin, D.I. Fractal Model of a Compact Intracloud Discharge. II. Specific Features of Electromagnetic Emission. Radiophys Quantum El 59, 560–575 (2016). https://doi.org/10.1007/s11141-016-9723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9723-5

Navigation