Skip to main content
Log in

The Spectral Statistical Method for Determining the Location Parameters of a Dipole Source of Electromagnetic Radiation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Using the measured horizontal and vertical components of the magnetic and electric fields, respectively, we solve the problem of determining the location of a dipole source of electromagnetic radiation, which is equivalent to the lightning discharge, at the specified point of an infinitely conducting plane. The proposed method, which is based on the analysis of the measured-signal spectra, allows one to develop many estimates of the source location, choose the final estimate on the basis of the results of analysis of the entire totality of these estimates, and, therefore, reach stability in determining the source location. The spectral method makes it possible to obtain more stable solutions at a lower computation cost compared with the previously developed parametric extremum method. The spectral-method algorithm can be naturally parallelized. The results of the analytical and numerical studies of the accuracy and stability of the proposed method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Kononov, I.A. Petrenko, and V. S. Snegurov, Radioengineering Methods for Thunderstorm Cell Positioning [in Russian], Gidrometeoizdat, Leningrad (1986).

    Google Scholar 

  2. A. V. Panyukov, J. Geophys. Res., 101, No. D10, 14997 (1996).

    Article  ADS  Google Scholar 

  3. A. V. Panyukov, Radiophys. Quantum Electron., 42, No. 3, 239 (1999).

    Article  ADS  Google Scholar 

  4. M. Popov and S. He, J. Geophys. Res., 105, No. D16, 20821 (2000).

    Article  ADS  Google Scholar 

  5. B. Z. Taibin, IEEE Anten. Propag. Magaz., 48, 48 (2006).

    Article  ADS  Google Scholar 

  6. A.V. Panyukov, D.V. Buduev, and D.N. Malov, Vestn. Youzh.-Ural. Gos. Univ. Ser. Mat., Fiz., Khim., No. 8, 11 (2003).

  7. I. I. Kononov, I. E. Yusupov, and N.V. Kandaratskov, Radiophys. Quantum Electron., 56, Nos. 11–12, 788 (2014).

    Article  ADS  Google Scholar 

  8. A.V. Panyukov and D.V. Buduev, Élektrich., 4, 10 (2001).

    Google Scholar 

  9. MNTs Project No. 1822:http://www.istc.ru/istc/db/projects.nsf.

  10. A.V. Panyukov, N.A. Fayzulin, and D.V. Buduev, Russian Federation Patent No. 2230336, MPK G01S 5/00, One-Point System for Thunderstorm Positioning in the Near Zone, Appl. 07.08.2002, Publ. 10.06.2004. Bull. No. 16, p. 4.

  11. A. V. Panyukov and D.N. Malov, Russian Federation Patent No. 2253133, MPK G01S 13.95, G01S 5.16, The Method for Positioning the Lightning Discharge and the Multipoint System for its Realization, Appl. 31.08.2003, Publ. 25.05.2005, Bull. No. 15, p. 7.

  12. A. V. Panyukov, Proc. VI Rus. Conf. Atmos. Electr., October 1-7, 2007, Nizhny Novgorod, Inst. Appl. Phys. RAS (2007), p. 255.

  13. A. N. Tikhonov, Dokl. Akad. Nauk SSSR, 39, No. 5, 195 (1943).

    Google Scholar 

  14. A. V. Panyukov and A.K. Bogushov, Vestn. Youzh.-Ural. Gos. Univ. Ser. Mat. Model. Program., No. 18(277), 342 (2012).

  15. A.K. Bogushov and A.V. Panyukov, Vestn. Perm. Univ. Mat. Mekh. Inform. No. 3(11), 17 (2012).

  16. A. V. Panyukov and A.K. Bogushov, Proc. VII Rus. Conf. Atmos. Electr., September 24-28, 2012, A. I. Voeikov Main Geophys. Observat., St.Petersburg (2012).

  17. A. V. Panyukov and A.K. Bogushov, Proc. XII Rus. Conf. Control Probl, June 16–19, Inst. Control Sci. RAS, Moscow (2014).

  18. W. L. Taylor, J. Res. NBS, 67D, No. 5, 539 (1963).

    Google Scholar 

  19. W. J. Koshak, E.P. Krider, and M. J. Murphy, J. Geophys. Res., 104, No. D8, 9617 (1999).

    Article  ADS  Google Scholar 

  20. K.T. Driscoll, R. J. Blakeslee, and M.E. Baginski, J. Geophys. Res., 97, No. D11, 474 (1992).

    Article  Google Scholar 

  21. V. G. Endean, Sci., Measur. Technol. IEE Proc. A, 140, No. 6, 11535 (1993).

    Google Scholar 

  22. M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, London (1970).

    MATH  Google Scholar 

  23. N. V. Baru, I. I. Kononov, and M. E. Solomonik, Direction and Range Finders of Near Thunderstorms [in Russian], Gidrometeoizdat, Leningrad (1976).

    Google Scholar 

  24. E.P. Krider, R.C. Noggle, M. A. Uman, J. Appl. Meteorol., 61, 980 (1980).

    Google Scholar 

  25. A. V. Panyukov and V.A. Strauss, Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Kluwer Academic Publishers, Dordrecht (1996).

    Google Scholar 

  26. http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.

  27. A.K. Bogushov and A.V. Panyukov, Paral. Comput. Techn. (PaVT2011), Proc. Int. Sci. Conf., Moscow, March 28–April 1, 2011, Izd. Tsentr YuUrGU, Chelyabinsk (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Panyukov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 4, pp. 308–319, April 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyukov, A.V., Bogushov, A.K. The Spectral Statistical Method for Determining the Location Parameters of a Dipole Source of Electromagnetic Radiation. Radiophys Quantum El 59, 278–288 (2016). https://doi.org/10.1007/s11141-016-9696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9696-4

Navigation