Skip to main content
Log in

Hypergeometric functions over finite fields

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We give a definition of generalized hypergeometric functions over finite fields using modified Gauss sums, which enables us to find clear analogy with classical hypergeometric functions over the complex numbers. We study their fundamental properties and prove summation formulas, transformation formulas and product formulas. An application to zeta functions of K3-surfaces is given. In the appendix, we give an elementary proof of the Davenport–Hasse multiplication formula for Gauss sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. Though Ramanujan is referred to in [20, Sect. 4] it was already known by Gauss [12, Formula 100].

References

  1. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of K3 surfaces. Am. J. Math. 124, 353–368 (2002)

    Article  MathSciNet  Google Scholar 

  2. Asakura, M.: Zeta functions of certain K3 families: application of the formula of Clausen. http://arxiv.org/abs/2109.05699v1 (2021)

  3. Bailey, W.N.: Products of generalized hypergeometric functions. Proc. Lond. Math. Soc. Ser. 2(28), 242–254 (1928)

    Article  Google Scholar 

  4. Bailey, W.N.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935)

    Google Scholar 

  5. Barman, R., Saikia, N., Tripathi, M.: Appell’s hypergeometric series over finite fields. Int. J. Number Theory 16(4), 673–692 (2020)

    Article  MathSciNet  Google Scholar 

  6. Berndt, B.C., Evans, R.J., Williams, K.S.: Gauss and Jacobi Sums. Wiley-Interscience, New York (1998)

    Google Scholar 

  7. Davenport, H., Hasse, H.: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math. 172, 151–182 (1935)

    Article  MathSciNet  Google Scholar 

  8. Erdélyi, A., et al. (eds.): Higher Transcendental Functions, vol. 1. McGrow-Hill, New York (1953)

    Google Scholar 

  9. Evans, R., Greene, J.: Clausen’s theorem and hypergeometric functions over finite fields. Finite Fields Appl. 15, 97–109 (2009)

    Article  MathSciNet  Google Scholar 

  10. Evans, R., Greene, J.: A quadratic hypergeometric \(_2F_1\) transformation over finite fields. Proc. Am. Math. Soc. 145, 1071–1076 (2017)

    Article  Google Scholar 

  11. Fuselier, J., Long, L., Ramakrishna, R., Swisher, H., Tu, F.-T.: Hypergeometric functions over finite fields. Mem. Amer. Math. Soc. 280, 1382 (2022)

  12. Gauss, C.F.: Determinatio seriei nostrae per aequationem differentialem secundi ordinis. In: Gauss, C.F. (ed.) Werke, vol. III, pp. 207–230. Königlichen Gesellschaft der Wissenschaften, Göttingen (1876)

    Google Scholar 

  13. Greene, J.: Hypergeometric functions over finite fields. Trans. Am. Math. Soc. 301, 77–101 (1987)

    Article  MathSciNet  Google Scholar 

  14. Helversen-Pasotto, A. L’identité de Barnes pour les corps finis, Sém. Delange-Pisot-Poitou, Théorie des nombres, tome 19, n\(^{\circ }\) 1 (1977/78), exp. n\(^{\circ }\) 22, pp.. 1–12 (1978)

  15. Katz, N.M.: Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton University Press, Princeton (1988)

    Book  Google Scholar 

  16. Katz, N.M.: Exponential Sums and Differential Equations, vol. 124. Princeton University Press, Princeton (1990)

    Book  Google Scholar 

  17. Koblitz, N.: The number of points on certain families of hypersurfaces over finite fields. Compositio Math. 48, 3–23 (1983)

    MathSciNet  Google Scholar 

  18. McCarthy, D.: Transformations of well-poised hypergeometric functions over finite fields. Finite Fields Appl. 18, 1133–1147 (2012)

    Article  MathSciNet  Google Scholar 

  19. Nakagawa, A.: Artin \(L\)-functions of diagonal hypersurfaces and generalized hypergeometric functions over finite fields. http://arxiv.org/abs/2111.15054

  20. Otsubo, N.: A new approach to hypergeometric transformation formulas. Ramanujan J. 55, 793–816 (2021)

    Article  MathSciNet  Google Scholar 

  21. Serre, J.-P.: Zeta and \(L\) functions. In: Schilling, O.F.G. (ed.) Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ, 1963), pp. 82–92. Harper & Row, New York (1965)

    Google Scholar 

  22. Silverman, J.H.: The Arithmetic of Elliptic Curves, GTM 106. Springer-Verlag, New York (1986)

    Book  Google Scholar 

  23. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  24. Terasoma, T.: Multiplication formula for hypergeometric functions. In: Hazama, F. (ed.) Algebraic Cycles and Related Topics (Kitasakado, 1994), pp. 83–91. World Sci. Publ, River Edge (1995)

    Google Scholar 

  25. Weil, A.: Numbers of solutions of equations in finite fields. Bull. Am. Math. Soc. 55, 497–508 (1949)

    Article  MathSciNet  Google Scholar 

  26. Whipple, F.J.W.: A group of generalized hypergeometric series: relations between 120 allied series of the type \({}_3F_2\left[{{a, b, c, e, f}}\right]\). Proc. Lond. Math. Soc. Ser. 2(23), 104–114 (1925)

    Article  Google Scholar 

  27. Whipple, F.J.W.: Some transformations of generalized hypergeometric series. Proc. Lond. Math. Soc. Ser. 2(26), 257–272 (1927)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ryojun Ito and Akio Nakagawa for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Otsubo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by JSPS Grant-in-Aid for Scientific Research: 18K03234.

Appendix A: A proof of the multiplication formula for Gauss sums

Appendix A: A proof of the multiplication formula for Gauss sums

Here we give an elementary proof of Theorem 3.10, using a geometric construction of Terasoma in his proof of the same theorem [24, Theorem 3]. While he uses l-adic cohomology, we count the number of rational points, the two objects being related by the Lefschetz trace formula.

Let X be a variety over \(\kappa \) equipped with a left action of a finite group G, and suppose that the quotient variety \(G\backslash X\) exists. Fix an algebraic closure \(\overline{\kappa }\) of \(\kappa \). Let F denote the qth power Frobenius acting on \(X=X(\overline{\kappa })\). For each \(g\in G\), put

$$\begin{aligned} \Lambda (X,g)=\#\{x \in X \mid Fx=gx\}. \end{aligned}$$

For a character \(\chi \) (of a \(\mathbb {C}\)-linear representation) of G, put

$$\begin{aligned} N(X,\chi )= \frac{1}{\# G} \sum _{g\in G} \chi (g) \Lambda (X,g). \end{aligned}$$

We have the following functorialities.

Lemma A.1

(cf. [21, 2.3])

  1. (i)

    If \(H \subset G\) is a normal subgroup and \(\chi \) is a character of G/H, then

    $$\begin{aligned} N(X,\chi |_G) = N(H\backslash X, \chi ). \end{aligned}$$
  2. (ii)

    If \(H \subset G\) is a subgroup and \(\chi \) is a character of H, then

    $$\begin{aligned} N(X,\chi )= N(X, {\text {Ind}}_H^G \chi ). \end{aligned}$$

Now we start the proof. Since the statement is obvious if \(\alpha ^n=\varepsilon \), we suppose that \(\alpha ^n\ne \varepsilon \). Then, by Proposition 2.2 (iv), we are reduced to prove

$$\begin{aligned} \alpha ^n(n) j(\underbrace{\alpha ,\dots , \alpha }_{n\ \textrm{times}}) = \prod _{\nu ^n=\varepsilon ,\nu \ne \varepsilon } j(\alpha ,\nu ). \end{aligned}$$

The following varieties, maps among them and group actions are all defined over \(\kappa \). Let X be a twisted Fermat hypersurface of dimension \(n-1\) defined by

$$\begin{aligned} t_1^{q-1} + \cdots + t_n^{q-1}= n, \quad t_1\cdots t_n \ne 0. \end{aligned}$$

Let C be a Fermat quotient curve defined by

$$\begin{aligned} x^{q-1}+y^n=1, \quad x \ne 0. \end{aligned}$$

Let \(S\subset {\mathbb {A}}^n\) be a hyperplane defined by

$$\begin{aligned} s_1+\cdots +s_n=n, \quad s_1\cdots s_n \ne 0, \end{aligned}$$

and let \(T\rightarrow S\) be a covering defined by \(t^{q-1}=s_1\cdots s_n\). Define a map \(X \rightarrow T\) by

$$\begin{aligned} s_j=t_j^{q-1} \quad (j=1,2,\dots , n), \quad t=\prod _{j=1}^n t_j. \end{aligned}$$

In this appendix, let \(\mu _n\) denote the group of nth roots of unity in \(\kappa \). Fix a primitive root \(\zeta \in \mu _n\) and define a map \(C^{n-1} \rightarrow T\) by

$$\begin{aligned} s_j=\prod _{i=1}^{n-1} (1-\zeta ^j y_i) \quad (j=1,2,\dots , n), \quad t=\prod _{i=1}^{n-1} x_i, \end{aligned}$$

where \((x_i,y_i)\) denotes the coordinates of the ith component of \(C^{n-1}\). Then, X, T, \(C^{n-1}\) are all Galois over S, and we have natural identifications

$$\begin{aligned} \textrm{Gal}(X/S)=\mu _{q-1}^n, \quad \textrm{Gal}(T/S)=\mu _{q-1}, \quad \textrm{Gal}(C^{n-1}/S)=\mu _{q-1}^{n-1} \rtimes S_{n-1}. \end{aligned}$$

The restriction maps \(\textrm{Gal}(X/S)\rightarrow \textrm{Gal}(T/S)\) and \(\textrm{Gal}(C^{n-1}/S)\rightarrow \textrm{Gal}(T/S)\) are identified respectively with the multiplication \(\mu _{q-1}^n\rightarrow \mu _{q-1}\) and the first projection followed by the multiplication \(\mu _{q-1}^{n-1}\rightarrow \mu _{q-1}\).

Remark A.2

Terasoma [24] also constructs a common covering of X and \(C^{n-1}\) over S. Let \(C' \rightarrow C\) be a covering given by \(u_j^{q-1}=1-\zeta ^j y\) (\(j=1,\dots , n\)), \(\prod _{j=1}^n u_j = x\). Then, as well as the map \(C'^{n-1}\rightarrow C^{n-1}\), the map \(C'^{n-1} \rightarrow X\) is given by \(t_j= \prod _{i=1}^{n-1} u_{i,j}\) (\(j=1,\dots , n\)), and \(C'^{n-1}\) is Galois over S with \(\textrm{Gal}(C'^{n-1}/S)=(\mu _{q-1}^n)^{n-1} \rtimes S_{n-1}\).

For the given \(\alpha \in \widehat{\kappa ^*}=\widehat{\mu _{q-1}}\), put \(\alpha ^{(n)}=\alpha |_{\mu _{q-1}^n}\) and \(\chi =\alpha |_{\mu _{q-1}^{n-1}\rtimes S_{n-1}}\). Then by Lemma A.1 (i),

$$\begin{aligned} N(X,\alpha ^{(n)}) =N(T,\alpha )= N(C^{n-1}, \chi ). \end{aligned}$$

By Weil [25] (cf. [17, (2.12)]), we have

$$\begin{aligned} N(X,\alpha ^{(n)}) = (-1)^{n-1}\alpha ^n(n) j(\underbrace{\alpha ,\dots , \alpha }_{n\,\,\textrm{times}}). \end{aligned}$$

Our task is to compute \(N(C^{n-1}, \chi )\). Let \(C_0\subset C\) be the subvariety defined by \(y\ne 0\), and put \(D=C\setminus C_0\). For \(k \in \mathbb {N}\), put

$$\begin{aligned} H_k=\mu _{q-1}^k \rtimes S_k, \quad G_k=(\mu _{q-1}\times \mu _n)^k \rtimes S_k, \end{aligned}$$

(\(S_0=\{1\}\) by convention). An element of \(G_k\) is written as \(\xi \eta \sigma \) with \(\xi =(\xi _i)_{i=1,\dots , k} \in \mu _{q-1}^k\), \(\eta =(\eta _i)_{i=1,\dots , k}\in \mu _n^k\) and \(\sigma \in S_k\). Then \(G_k\) acts naturally on \(C^k\), respecting \(C_0^k\) and \(D^k\). The support of \(\sigma \in S_k\) is defined by \({\text {supp}}(\sigma )=\{i=1,\dots , k \mid \sigma (i)\ne i\}\). For \(\xi \in \mu _{q-1}^k\) and \(\sigma \in S_k\), put \(p(\xi )=\prod _{i=1}^k \xi _i\), \(p_\sigma (\xi )=\prod _{i\in {\text {supp}}(\sigma )} \xi _i\), and similarly \(p(\eta )\), \(p_\sigma (\eta )\) for \(\eta \in \mu _n^k\). Define a character \(\chi _k \in \widehat{H_k}\) by

$$\begin{aligned} \chi _k(\xi \sigma )=\alpha (p(\xi )). \end{aligned}$$

Note that \(\chi =\chi _{n-1}\). For \(\sigma \in S_k\), we write its cycle decomposition (unique up to ordering) as \(\sigma =\sigma _1\cdots \sigma _r\), where \(\sigma _j\) is a cyclic permutation of length \(l_j\) with \(\sum _{j=1}^r l_j=k\), and \({\text {supp}}(\sigma _j)\)’s are all disjoint.

Lemma A.3

Let \(\xi \eta \sigma \in G_k\) and \(\sigma =\sigma _1\cdots \sigma _r\) be the cycle decomposition. Then

$$\begin{aligned} {\text {Ind}}^{G_k}_{H_k} \chi _k (\xi \eta \sigma )= \prod _{j=1}^r \sum _{\varphi \in \widehat{\mu }_n} \alpha (p_{\sigma _j}(\xi ))\varphi (p_{\sigma _j}(\eta )). \end{aligned}$$

Proof

Since \(\mu _n^k\) represents \(G_k/H_k\), we have by definition

$$\begin{aligned} {\text {Ind}}^{G_k}_{H_k} \chi _k (\xi \eta \sigma )= \sum _{\eta '\in \mu _n^k, \eta '^{-1}\eta \sigma (\eta ')=1} \chi _k(\xi ). \end{aligned}$$

The condition \(\eta '^{-1}\eta \sigma (\eta ')=1\) is satisfied only when \(p_{\sigma _j}(\eta )=1\) for all j, and then the number of such \(\eta '\)’s is \(n^r\). Therefore, for any \(\eta \), the number of \(\eta '\)’s satisfying the condition is \(\prod _{j=1}^r \sum _{\varphi \in \widehat{\mu _n}} \varphi (p_{\sigma _j}(\eta ))\). Since \(\chi _k(\xi )=\prod _j \alpha (p_{\sigma _j}(\xi ))\), the statement follows. \(\square \)

For an integer \(l\ge 1\), let \(\kappa _l\) denote the degree l extension of \(\kappa \) contained in \(\overline{\kappa }\), and let \(N_l:\kappa _l^* \rightarrow \kappa ^*\) denote the norm map.

Lemma A.4

Let \(\xi \eta \sigma \in G_k\) and \(\sigma =\sigma _1\cdots \sigma _r\) be the cycle decomposition. Then

$$\begin{aligned}&\Lambda (C_0^k,\xi \eta \sigma )= ((q-1)n)^r\\&\times \prod _{j=1}^r \#\left\{ (u,v) \in (\kappa _{l_j}^*)^2 \bigm | u+v=1, N_{l_j}(u)=p_{\sigma _j}(\xi ), N_{l_j}(v)^\frac{q-1}{n}=p_{\sigma _j}(\eta ) \right\} . \end{aligned}$$

Proof

It reduces to the case \(r=1\). Let \((x_i,y_i)_{i=1,\dots , k} \in C_0^k\). Then \(\xi \eta \sigma (x_i,y_i)_i=F(x_i,y_i)_i\) happens only when \(F^k(x_1,y_1)=(p(\xi )x_1,p(\eta )y_1)\), i.e. \(x_1^{q^k-1}=p(\xi )\), \(y_1^{q^k-1}=p(\eta )\). If we put \(u=x_1^{q-1}\), \(v=y_1^n\), then \(u, v \in \kappa _{l_j}^*\), \(u+v=1\) and the condition above becomes \(N_k(u)=p(\xi )\), \(N_k(v)^\frac{q-1}{n}=p(\eta )\). To each (uv) as above correspond \((q-1)n\) points \((x_1,y_1)\), hence the lemma. \(\square \)

Proposition A.5

We have

$$\begin{aligned} N(C_0^k,\chi _k)=\frac{(-1)^k}{k!} \sum _{\nu _1,\dots , \nu _k} \prod _{i=1}^k j(\alpha ,\nu _i), \end{aligned}$$

where the sum is taken over all distinct \(\nu _1,\dots , \nu _k\in \widehat{\kappa ^*}\) with \(\nu _1^n=\cdots =\nu _k^n=\varepsilon \).

Proof

By Lemma A.1 (ii), we have \(N(C_0^k,\chi _k)=N(C_0^k, {\text {Ind}}_{H_k}^{G_k} \chi _k)\). First, fix \(\sigma =\sigma _1\cdots \sigma _r \in S_k\). By Lemmas A.3 and A.4,

$$\begin{aligned}&\sum _{\xi ,\eta } {\text {Ind}}_{H_k}^{G_k} \chi _k(\xi \eta \sigma ) \Lambda (C_0^k,\xi \eta \sigma )\\&=((q-1)n)^r \prod _j \sum _{\varphi } ((q-1)n)^{l_j-1} \sum _{u_j,v_j \in \kappa _{l_j}^*, u_j+v_j=1} \alpha (N_{l_j}(u))\varphi (N_{l_j}(v)^\frac{q-1}{n}). \end{aligned}$$

Note that, for each \(\xi _0\in \mu _{q-1}\), the number of \(\xi \in \mu _{q-1}^{l_j}\) such that \(p(\xi )=\xi _0\) is \((q-1)^{l_j-1}\), and similarly for \(\eta \in \mu _n^{l_j}\). We identify \(\varphi \in \widehat{\mu _n}\) with \(\nu \in \widehat{\kappa ^*}\) satisfying \(\nu ^n=\varepsilon \) by \(\nu (v)=\varphi (v^\frac{q-1}{n})\). Then, the last sum is written as \(-j(\alpha \circ N_{l_j}, \nu \circ N_{l_j})\), the Jacobi sum over \(\kappa _{l_j}\). We have another well-known formula of Davenport–Hasse [7] (cf. [25, (5)])

$$\begin{aligned} j(\alpha \circ N_{l_j}, \nu \circ N_{l_j})=j(\alpha ,\nu )^{l_j}. \end{aligned}$$

Hence it follows

$$\begin{aligned} \frac{1}{((q-1)n)^k} \sum _{\xi ,\eta } {\text {Ind}}_{H_k}^{G_k} \chi _k(\xi \eta \sigma ) \Lambda (C_0^k,\xi \eta \sigma ) = (-1)^r \prod _{j=1}^r \sum _{\nu \in \widehat{\kappa ^*}, \nu ^n=\varepsilon } j(\alpha ,\nu )^{l_j}. \end{aligned}$$

Let us say that a k-tuple \((\nu _1,\dots , \nu _k)\) is \(\sigma \)-admissible if for each \(j=1,\dots , r\), \(\nu _i\)’s agree for all \(i\in {\text {supp}}(\sigma _j)\). Then the right-hand side is written as

$$\begin{aligned} (-1)^r \sum _{(\nu _1,\dots , \nu _k): \sigma \text {-admissible}} \prod _{i=1}^k j(\alpha ,\nu _i). \end{aligned}$$

Now we let \(\sigma \) vary and write \(r=r(\sigma )\). Then,

$$\begin{aligned} N(C_0^k, {\text {Ind}}_{H_k}^{G_k}\chi ) =\frac{1}{k!} \sum _{\nu _1,\dots , \nu _k} \sum _{\sigma } (-1)^{r(\sigma )}\prod _{i=1}^k j(\alpha ,\nu _i), \end{aligned}$$

where the last sum is taken over \(\sigma \) for which \((\nu _1,\dots , \nu _k)\) is \(\sigma \)-admissible. This sum vanishes unless \(\nu _1,\dots , \nu _k\) are all distinct, since

$$\begin{aligned} \sum _{\sigma \in S_l} (-1)^{r(\sigma )} = (-1)^l \sum _{\sigma \in S_l} {\text {sgn}} \sigma = 0\quad (l \ge 2). \end{aligned}$$

Hence the proposition is proved. \(\square \)

Proposition A.6

For any \(k\ge 0\), we have \(N(D^k,\chi _k)=1.\)

Proof

Since \(D(\overline{\kappa })=\{(x,0)\mid x\in \kappa ^*\}\), it is fixed by F. For any \(\xi \sigma \in H_k\) with \(\sigma =\sigma _1\cdots \sigma _r\) as before, \(\Lambda (D^k,\xi \sigma )=(q-1)^{r(\sigma )}\) if \(p_{\sigma _j}(\xi )=1\) for all \(j=1,\dots , r\), and \(\Lambda (D^k,\xi \sigma )=0\) otherwise. The number of \(\xi \)’s such that \(p_{\sigma _j}(\xi )=1\) for all j is \(\prod _j (q-1)^{l_j-1}\), and for such \(\xi \), we have \(\chi (\xi \sigma )=\prod _j \alpha (p_{\sigma _j}(\xi ))=1\). Hence \(N(D^k,\chi _k)=(\#H_k)^{-1} \sum _{\sigma \in S_k} (q-1)^k =1.\) \(\square \)

Now, let \((C^{n-1})_k \subset C^{n-1}\) denote the \(S_{n-1}\)-orbit of \(D^k \times {C_0}^{n-1-k}\) (\(k=0,\dots , n-1\)). Then,

$$\begin{aligned} N((C^{n-1})_k,\chi )&= \frac{1}{\# H_{n-1}} \left( {\begin{array}{c}n-1\\ k\end{array}}\right) \sum _{\xi _1\sigma _1\in H_k, \xi _2\sigma _2\in H_{n-1-k}}\\&\qquad \qquad \chi _k(\xi _1) \chi _{n-1-k}(\xi _2) \Lambda (D^k,\xi _1\sigma _1)\Lambda (C_0^{n-1-k},\xi _2\sigma _2)\\&= N(D^k,\chi _k) N(C_0^{n-1-k},\chi _{n-1-k}). \end{aligned}$$

By Propositions A.5 and A.6, noting \(j(\alpha ,\varepsilon )=1\), it follows

$$\begin{aligned} N(C^{n-1},\chi ) =\sum _{k=0}^{n-1} N((C^{n-1})_k,\chi ) =(-1)^{n-1} \prod _{\nu ^n=\varepsilon , \nu \ne \varepsilon } j(\alpha ,\nu ). \end{aligned}$$

Hence the theorem is proved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsubo, N. Hypergeometric functions over finite fields. Ramanujan J 63, 55–104 (2024). https://doi.org/10.1007/s11139-023-00777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-023-00777-3

Keywords

Mathematics Subject Classification

Navigation