Skip to main content
Log in

Diagonalizable Thue equations: revisited

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(r,h\in {\mathbb {N}}\) with \(r\ge 7\) and let \(F(x,y)\in {\mathbb {Z}}[x ,y]\) be a binary form such that

$$\begin{aligned} F(x , y) =(\alpha x + \beta y)^r -(\gamma x + \delta y)^r, \end{aligned}$$

where \(\alpha \), \(\beta \), \(\gamma \), and \(\delta \) are algebraic constants with \(\alpha \delta -\beta \gamma \ne 0\). We establish upper bounds for the number of primitive solutions to the Thue inequality \(0<|F(x, y)| \le h\), improving an earlier result of Siegel and of Akhtari, Saradha, and Sharma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhtari, S.: The method of Thue-Siegel for binary quartic forms. Acta. Arith. 141(1), 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhtari, S., Bengoechea, P.: Representation of integers by sparse binary forms. Trans. Am. Math. Soc. 374(3), 1687–1709 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhtari, S., Saradha, N., Sharma, D.: Thue’s inequalities and the hypergeometric method. Ramanujan J. 45(2), 521–567 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, M.A.: Rational approximation to algebraic numbers of small height: the Diophantine equation \(|ax^n-by^n|=1\). J. Reine Angew. Math. 535, 1–49 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, M.A.: On the representation of unity by binary cubic forms. Trans. Am. Math. Soc. 353, 1507–1534 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, M.A., de Weger, B.M.M.: On the Diophantine equation \(|ax^n-by^n|=1,\). Math. Comput. 67, 413–438 (1998)

    Article  MATH  Google Scholar 

  7. Corrigendum, ibid. 86/3-4 , 503–504 (2015)

  8. Dethier, C.: Diagonalizable quartic Thue equations with negative discriminant. Acta Arith. 193(3), 235–252 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erratum. Invent. Math. 75(2), 379 (1984)

  10. Evertse, J.H.: On the representation of integers by binary cubic forms of positive discriminant. Invent. Math. 73(1), 117–138 (1983); Erratum. Invent. Math. 75(2), 379 (1984)

  11. Győry, K.: Thue inequalities with a small number of primitive solutions. Period. Math. Hungar. 42, 199–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Győry, K.: On the number of primitive solutions of Thue equations and Thue inequalities, Paul Erdős and his mathematics I. Bolyai Soc. Math. Stud. 11, 279–294 (2002)

    MATH  Google Scholar 

  13. Paul, M.: Voutier, Thue’s Fundamentaltheorem, I: the general case. Acta Arith. 143(2), 101–144 (2010)

    Article  MathSciNet  Google Scholar 

  14. Saradha, N., Sharma, D.: Number of representations of integers by binary forms. Publ. Math. Debrecen 85(1–2), 233–255 (2014); Corrigendum, ibid. 86/3–4 , 503–504 (2015)

  15. Saradha, N., Sharma, D.: Number of solutions of cubic Thue inequalities with positive discriminant. Acta Arith. 171(1), 81–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Siegel, C.L.: Einige Erläuterungen zu Thues Untersuchungen über Annäherungswerte algebraischer Zahlen und diophantische Gleichungen. Nach. Akad. Wissen Göttingen Math-phys 169–195 (1970)

  17. Stewart, C.L.: On the number of solutions of polynomial congruences and Thue equations. J. Am. Math. Soc. 4, 793–835 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thue, A.: Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135, 284–305 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wakabayashi, I.: Cubic Thue inequalities with negative discriminant. J. Number Theory 97(2), 222–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Saradha would like to thank the Indian National Science Academy for awarding the Senior Scientist fellowship under which this work was done. She also thanks DAE-Center for Excellence in Basic Sciences, Mumbai University for providing facilities to carry out this work. We thank the referee for advising us to point out where the proof fails when \(r=6\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divyum Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Divyum acknowledges the support of the DST-SERB SRG Grant SRG/2021/000773 and the OPERA award of BITS Pilani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saradha, N., Sharma, D. Diagonalizable Thue equations: revisited. Ramanujan J 62, 291–306 (2023). https://doi.org/10.1007/s11139-022-00682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00682-1

Keywords

Mathematics Subject Classification

Navigation