Skip to main content
Log in

A note on some constants related to the zeta-function and their relationship with the Gregory coefficients

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this article, new series for the first and second Stieltjes constants (also known as generalized Euler’s constant), as well as for some closely related constants are obtained. These series contain rational terms only and involve the so-called Gregory coefficients, which are also known as the (reciprocal) logarithmic numbers, the Cauchy numbers of the first kind and the Bernoulli numbers of the second kind. In addition, two interesting series with rational terms for Euler’s constant \(\gamma \) and the constant \(\ln 2\pi \) are given, and yet another generalization of Euler’s constant is proposed and various formulas for the calculation of these constants are obtained. Finally, we mention in the paper that almost all the constants considered in this work admit simple representations via the Ramanujan summation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We recall that \(\,\gamma =\lim _{n\rightarrow \infty }(H_n - \ln n)=-{\varGamma }'(1)=0.5772156649\ldots \,\), where \(H_n\) is the nth harmonic number.

  2. It follows from (2) that \(\,\delta _m=(-1)^m\big \{\zeta ^{(m)}(0) + m!\big \}\).

  3. This representation is very old and was already known to Adolf Pilz, Stieltjes, Hermite and Jensen [4, p. 366].

  4. A slightly different expression for \(\delta _m\) was given earlier by Lehmer [33, Eq. (5), p. 266], Sitaramachandrarao [38, Theorem 1], Finch [23, p. 168 et seq.] and Connon [18, Eqs. (2.15), (2.19)]. The formula given by these writers differ from our (4) by the presence of the definite integral of \(\ln ^m x \) taken over [1, n], which in fact may be reduced to a finite combination of logarithms and factorials.

  5. For more details on the Ramanujan summation, see [10, 11, 13, 14]. Note that some authors may use slightly different definitions and notations for the Ramanujan summation, see e.g. [3, Ch. 6], [27, Ch. 13].

  6. This expression for \(\delta _2\) was found by Ramanujan, see e.g. [3, (18.2)].

  7. For more information about \(G_n\), see [6, pp. 410–415], [4, p. 379], [7], and the literature given therein (nearly 50 references).

  8. More than 60 references on the Stirling numbers of the first kind may be found in [6, Sect. 2.1] and [4, Sect. 1.2]. We also note that our definitions for the Stirling numbers agree with those adopted by Maple or Mathematica: our \(S_1(n,l)\) equals to Stirling1(n,l) from the former and to StirlingS1[n,l] from the latter.

  9. This result appeared without proof in an earlier paper [6, p. 413]. Later, it was generalized in [20, Proposition 1].

  10. See [10, Eq. (4.31)].

  11. The second reference provides a particularly interesting historical analysis of this formula.

  12. For more digits, see OEIS A270859.

  13. The numbers \(\kappa _0\) and \(\kappa _{-1}\) are found for the values to which Fontana–Mascheroni and Fontana series converge, respectively [6, pp. 406, 410].

  14. Other possible generalizations of Euler’s constant were proposed by Briggs, Lehmer, Dilcher and some other authors [8, 22, 32, 36, 39, 40].

  15. These polynomials, called the modified Bell polynomials, are defined by the generating function: \(\,\exp \left( \sum _{n=1}^{\infty }x_n \frac{t^n}{n}\right) = \sum _{m=0}^{\infty }P_m(x_1,\ldots ,x_m)\, t^m\), see e.g. [11, 12].

  16. The series being uniformly convergent.

  17. See also [41, Theorem 2.7].

References

  1. Apostol, T.M.: Formulas for higher derivatives of the Riemann zeta function. Math. Comput. 44(169), 223–232 (1985)

    Article  MathSciNet  Google Scholar 

  2. Berndt, B.C.: On the Hurwitz zeta-function. Rocky Mt. J. Math. 2(1), 151–157 (1972)

    Article  MathSciNet  Google Scholar 

  3. Berndt, B.C.: Ramanujan’s Notebooks, Part I. Springer, New York (1985)

    Book  Google Scholar 

  4. Blagouchine, I.V.: Expansions of generalized Euler’s constants into the series of polynomials in \(\pi ^{-2}\) and into the formal enveloping series with rational coefficients only. J. Number Theory 158, 365–396 (2016); Erratum: J. Number Theory 173, 631–632 (2016)

  5. Blagouchine, I.V.: Three notes on Ser’s and Hasse’s representations for the zeta-functions. arXiv:1606.02044 (2016)

  6. Blagouchine, I.V.: Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to \(\pi ^{-1}\). J. Math. Anal. Appl. 442, 404–434 (2016). arXiv:1408.3902

    Article  MathSciNet  Google Scholar 

  7. Blagouchine, I.V.: A note on some recent results for the Bernoulli numbers of the second kind, J. Integer Seq. 20(3), Article 17.3.8, pp. 1–7 (2017). arXiv:1612.03292

  8. Briggs, W.E.: The irrationality of \(\gamma \) or of sets of similar constants. Vid. Selsk. Forh. (Trondheim) 34, 25–28 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Briggs, W.E., Chowla, S.: The power series coefficients of \(\zeta (s)\). Am. Math. Mon. 62, 323–325 (1955)

    MATH  Google Scholar 

  10. Candelpergher, B.: Ramanujan Summation of Divergent Series. Lecture Notes in Mathematics Series. Springer, Cham (2017)

    Book  Google Scholar 

  11. Candelpergher, B., Coppo, M.-A.: A new class of identities involving Cauchy numbers, harmonic numbers and zeta values. Ramanujan J. 27, 305–328 (2012)

    Article  MathSciNet  Google Scholar 

  12. Candelpergher, B., Coppo, M.-A.: Le produit harmonique des suites. Enseign. Math. 59, 39–72 (2013)

    Article  MathSciNet  Google Scholar 

  13. Candelpergher, B., Coppo, M.-A., Delabaere, E.: La sommation de Ramanujan. Enseign. Math. 43, 93–132 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Candelpergher, B., Gadiyar, H., Padma, R.: Ramanujan summation and the exponential generating function \(\sum _{k=0}^{\infty } \frac{z^k}{k!} \zeta ^{\prime }(-k)\). Ramanujan J. 21, 99–122 (2010)

    Article  MathSciNet  Google Scholar 

  15. Coffey, M.W.: Certain logarithmic integrals, including solution of monthly problem #tbd, zeta values, and expressions for the Stieltjes constants. arXiv:1201.3393v1 (2012)

  16. Collected papers of Srinivasa Ramanujan, Cambridge (1927)

  17. Comtet, L.: Advanced Combinatorics. The Art of Finite and Infinite Expansions (Revised and Enlarged Edition). D. Reidel Publishing Company, Dordrecht (1974)

    Chapter  Google Scholar 

  18. Connon, D.F.: Some possible approaches to the Riemann hypothesis via the Li/Keiper constants. arXiv:1002.3484 (2010)

  19. Coppo, M.-A.: Nouvelles expressions des constantes de Stieltjes. Expositiones Mathematicæ 17, 349–358 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Coppo, M.-A., Young, P.T.: On shifted Mascheroni series and hyperharmonic numbers. J. Number Theory 169, 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  21. Correspondance d’Hermite et de Stieltjes. Vol. 1 and 2, Gauthier-Villars, Paris (1905)

  22. Dilcher, K.: Generalized Euler constants for arithmetical progressions. Math. Comput. 59, 259–282 (1992)

    Article  MathSciNet  Google Scholar 

  23. Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  24. Franel, J.: Note n\(\circ \) 245. L’Intermédiaire des mathématiciens, tome II, pp. 153–154 (1895)

  25. Gram, J.P.: Note sur le calcul de la fonction \(\zeta (s)\) de Riemann, Oversigt. K. Danske Vidensk. (Selskab Forhandlingar), pp. 305–308 (1895)

  26. Hardy, G.H.: Note on Dr. Vacca’s series for \(\gamma \). Q. J. Pure Appl. Math. 43, 215–216 (1912)

    Google Scholar 

  27. Hardy, G.H.: Divergent Series. Clarendon Press, Oxford (1949)

    MATH  Google Scholar 

  28. Israilov, M.I.: On the Laurent decomposition of Riemann’s zeta function. Trudy Mat. Inst. Akad. Nauk. SSSR 158, 98–103 (1981). (in Russian)

    MATH  Google Scholar 

  29. Jensen, J.L.W.V.: Note n\(\circ \) 245. Deuxième réponse. Remarques relatives aux réponses de MM. Franel et Kluyver. L’Intermédiaire des mathématiciens, tome II, pp. 346–347 (1895)

  30. Jensen, J.L.W.V.: Sur la fonction \(\zeta (s)\) de Riemann. Comptes-rendus de l’Académie des sciences, tome 104, 1156–1159 (1887)

  31. Kowalenko, V.: Properties and applications of the reciprocal logarithm numbers. Acta Applicandæ Mathematicæ 109, 413–437 (2010)

    Article  MathSciNet  Google Scholar 

  32. Lehmer, D.H.: Euler constants for arithmetical progressions. Acta Arithmetica 27, 125–142 (1975)

    Article  MathSciNet  Google Scholar 

  33. Lehmer, D.H.: The sum of like powers of the zeros of the Riemann zeta function. Math. Comput. 50(181), 265–273 (1988)

    Article  MathSciNet  Google Scholar 

  34. Liang, J.J.Y., Todd, J.: The Stieltjes constants. J. Res. Natl. Bur. Stand. Math. Sci. 76B(3–4), 161–178 (1972)

    Article  MathSciNet  Google Scholar 

  35. Nan-You, Z., Williams, K.S.: Some results on the generalized Stieltjes constant. Analysis 14, 147–162 (1994)

    MathSciNet  Google Scholar 

  36. Pilehrood, T.H., Pilehrood, K.H.: Criteria for irrationality of generalized Euler’s constant. J. Number Theory 108, 169–185 (2004)

    Article  MathSciNet  Google Scholar 

  37. Shen, L.-C.: Remarks on some integrals and series involving the Stirling numbers and \(\zeta (n)\). Trans. Am. Math. Soc. 347(4), 1391–1399 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Sitaramachandrarao, R.: Maclaurin Coefficients of the Riemann Zeta Function. Abstracts of Papers Presented to the American Mathematical Society, vol. 7, no. 4, p. 280, *86T-11-236 (1986)

  39. Tasaka, T.: Note on the generalized Euler constants. Math. J. Okayama Univ. 36, 29–34 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Xia, L.: The parameterized-Euler-constant function \(\gamma _a(z)\). J. Number Theory 133(1), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  41. Xu, C., Yan, Y., Shi, Z.: Euler sums and integrals of polylogarithm functions. J. Number Theory 165, 84–108 (2016)

    Article  MathSciNet  Google Scholar 

  42. Young, P.T.: A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers. J. Number Theory 128, 2951–2962 (2008)

    Article  MathSciNet  Google Scholar 

  43. Young, P.T.: Rational series for multiple zeta and log gamma functions. J. Number Theory 133, 3995–4009 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vladimir V. Reshetnikov for his kind help and useful remarks. The authors also thank the referee for his valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iaroslav V. Blagouchine.

Appendix: Yet another generalization of Euler’s constant

Appendix: Yet another generalization of Euler’s constant

The numbers \(\kappa _p:=\sum |G_n|\,n^{-p-1}\), where the summation extends over positive integers n, may also be regarded as one of the possible generalizations of Euler’s constant (since \(\kappa _0=\gamma _0=\gamma \) and \(\kappa _{-1}=\gamma _{-1}=1\)).Footnote 13\(^{,}\)Footnote 14 These constants, which do not seem to be reducible to “classical mathematical constants”, admit several interesting representations as stated in the following proposition.

Proposition 1

Generalized Euler’s constants \(\kappa _{p}:=\sum |G_n|\,n^{-p-1}\), where the summation extends over positive integers n, admit the following representations:

$$\begin{aligned} \kappa _{p}\displaystyle= & {} \,\frac{(-1)^{p}}{{\varGamma }(p+1)}\int \limits _0^1 \left\{ \frac{1}{\ln (1-x)}+ \frac{1}{x} \right\} \ln ^{p} x\; \mathrm{d}x, \quad \mathrm{Re}\,p > -1 \end{aligned}$$
(29)
$$\begin{aligned} \displaystyle= & {} \underbrace{\int \limits _0^1\cdots \int \limits _0^1 }_{p\text {-fold}} \left\{ {{\mathrm{li}}}\left( 1-\prod _{k=1}^{p}x_k \right) +\gamma + \sum _{k=1}^{p}\ln x_k \right\} \, \frac{\mathrm{d}x_1 \cdots \mathrm{d}x_{p}}{x_1 \cdots x_{p}}, \quad p = 1, 2, 3,\ldots \end{aligned}$$
(30)
$$\begin{aligned} \displaystyle= & {} \sum _{k=2}^{\infty } \frac{(-1)^{k}}{k} \sum _{n=p+1}^{\infty } \frac{\big |S_1(n,p+1)\big |}{n!\,n^{k-1}}, \quad p = 0, 1,2,\ldots \end{aligned}$$
(31)
$$\begin{aligned} \displaystyle= & {} \sum _{k=2}^{\infty } \frac{(-1)^{k}}{k} \sum _{n=p}^{\infty }\, \frac{P_{p}(H_{n}^{(1)}, -H_{n}^{(2)},\dots , (-1)^{p-1}H_{n}^{(p)}) }{(n+1)^{k}}, \quad p = 0, 1, 2,\ldots \end{aligned}$$
(32)
$$\begin{aligned} \displaystyle= & {} \sum _{n\geqslant 1}^{\mathcal {R}} \frac{1}{n} \sum _{n\geqslant n_{1}\geqslant \cdots \geqslant n_{p}\geqslant 1}\frac{1}{n_{1}\ldots n_{p}} \nonumber \\= & {} \sum _{n\geqslant 1}^{\mathcal {R}} \frac{P_{p}\big (H_{n}^{(1)}, H_{n}^{(2)},\dots ,H_{n}^{(p)}\big ) }{n},\quad p= 1, 2, 3, \ldots \qquad , \end{aligned}$$
(33)

where \({{\mathrm{li}}}\) is the integral logarithm function, \(H^{(m)}_n:=\sum _{k=1}^n k^{-m}\) stands for the generalized harmonic number and \(P_m\) denotes the sequence of polynomials

$$\begin{aligned} P_0= & {} 1,\quad P_1(x_1) = x_1, \quad P_2(x_1, x_2) = \tfrac{1}{2}\left( x_1^2 + x_2\right) ,\\ P_3 (x_1, x_2, x_3)= & {} \tfrac{1}{6}\left( x_1^3 + 3 x_1 x_2 + 2x_3\right) , \quad \ldots ^{15} \end{aligned}$$

Footnote 15 In particular, for the series \(\kappa _1\) mentioned in Theorem 1 and Remark 2, this gives

$$\begin{aligned} \kappa _1\,= & {} \sum _{n=1}^{\infty }\frac{\big |G_n\big |}{n^2} \displaystyle =\, -\int \limits _0^1 \left\{ \frac{1}{\ln (1-x)}+ \frac{1}{x} \right\} \ln x\; \mathrm{d}x \end{aligned}$$
(34)
$$\begin{aligned} \displaystyle= & {} \, \int \limits _0^1 \frac{\,-{{\mathrm{li}}}(1-x) + \gamma + \ln x\,}{x}\, \mathrm{d}x \, = \int \limits _0^\infty \Big \{ -{{\mathrm{li}}}\big (1-\mathrm{e}^{-x}\big ) + \gamma - x \Big \}\, \mathrm{d}x \end{aligned}$$
(35)
$$\begin{aligned} \displaystyle= & {} \sum _{k=2}^{\infty } \frac{(-1)^{k}}{k}\sum _{n=2}^{\infty }\frac{H_{n-1}}{n^{k}}\,= \sum _{n\geqslant 1}^{\mathcal {R}} \frac{H_n}{n}. \end{aligned}$$
(36)

Moreover, we also have

$$\begin{aligned} \displaystyle \kappa _1&\displaystyle =\gamma _1 + \frac{\gamma ^2}{2} - \frac{\pi ^2}{12} + \int \limits _0^1 \frac{{\varPsi }(x+1) + \gamma }{x}\,\mathrm{d}x \end{aligned}$$
(37)
$$\begin{aligned}&\displaystyle = \frac{\gamma ^2}{2} + \frac{\pi ^2}{12} -\frac{1}{2} + \frac{1}{2}\int \limits _0^1 {\varPsi }^2(x+1) \,\mathrm{d}x, \end{aligned}$$
(38)

where \({\varPsi }\) denotes the digamma function (logarithmic derivative of the \({\varGamma }\)-function).

Proof of formula (29)

We first write the generating equation for Gregory’s coefficients, Eq. (7), in the following form

$$\begin{aligned} \frac{1}{\ln (1-x)}+ \frac{1}{x} \, =\sum _{n=1}^\infty |G_{n}|\, x^{n-1}, \qquad |x|<1. \end{aligned}$$
(39)

Multiplying both sides by \(\ln ^{p} x\), integrating over the unit interval and changing the order of summation and integrationFootnote 16 yield

$$\begin{aligned} \int \limits _0^1 \left\{ \frac{1}{\ln (1-x)}+ \frac{1}{x} \right\} \ln ^{p} x\; \mathrm{d}x\, =\, \sum _{n=1}^\infty |G_{n}| \int \limits _0^1 x^{n-1} \ln ^{p} x \; \mathrm{d}x,\qquad \mathrm{Re}\,p>-1. \end{aligned}$$
(40)

The last integral may be evaluated as follows. Considering Legendre’s integral \(\,{\varGamma }(p+1)\,=\int t^{p} \mathrm{e}^{-t} \mathrm{d}t\,\) taken over \([0,\infty )\) and making a change of variable \(\,t=-(s+1)\ln x\,\), we have

$$\begin{aligned} \,\int \limits _0^1 x^s \ln ^p x \; \mathrm{d}x \,=\, (-1)^p\frac{{\varGamma }(p+1)}{\, (s+1)^{p+1}}, \quad \mathrm{Re}\,s>-1 ,\quad \mathrm{Re}\,p>-1. \end{aligned}$$
(41)

Inserting this formula into (40) and setting \(n-1\) instead of s yield (29).\(\square \)

Proof of formula (30)

Putting in (39) \(\,x=x_1x_2\cdots x_{p+1}\,\) and integrating over the volume \([0,1]^{p+1}\), where \(p\in {{\mathbb {N}}}\), on the one hand, we have

$$\begin{aligned} \underbrace{\int \limits _0^1\cdots \int \limits _0^1}_{(p+1)\text {-fold}} \sum _{n=1}^{\infty } |G_n| \big (x_1x_2\cdots x_{p+1}\big )^{n-1} \mathrm{d}x_1 \cdots \mathrm{d}x_{p+1} \,= \sum _{n=1}^{\infty }\frac{|G_n|}{n^{p+1}}. \end{aligned}$$
(42)

On the other hand

$$\begin{aligned} \int \limits _0^1 \left\{ \frac{1}{\ln (1-xy)}+ \frac{1}{xy} \right\} \, \mathrm{d}x\, =\,- \frac{\,{{\mathrm{li}}}(1-y) - \gamma - \ln y\,}{y}. \end{aligned}$$

Taking instead of y the product \(\,x_1x_2\cdots x_{p}\,\) and setting \(\,x=x_{p+1}\,\), and then integrating p times over the unit hypercube and equating the result with (42) yield (30). \(\square \)

Proof of formulas (31) and (32)

Writing in the generating equation (11) \(-x\) instead of z, multiplying it by \(\ln ^m x/x\) and integrating over the unit interval, we obtain the following relationFootnote 17

$$\begin{aligned} {\varOmega }(k,m) = (-1)^{m+k} m! \, k! \sum _{n=k}^{\infty } \frac{\big |S_1(n,k)\big |}{n!\,n^{m+1}}, \end{aligned}$$

where

$$\begin{aligned} {\varOmega }(k,m) \, := \int \limits _0^1 \frac{\ln ^k(1-x)\,\ln ^m x}{x} \, \mathrm{d}x,\qquad k,m\in \mathbb {N}. \end{aligned}$$

By integration by parts, it may be readily shown that

$$\begin{aligned} {\varOmega }(k,m) \,=\,\frac{k}{m+1}{\varOmega }(m+1,k-1), \end{aligned}$$

and thus, we deduce the duality formula:

$$\begin{aligned} \sum _{n=k}^{\infty } \frac{\big |S_1(n,k)\big |}{n!\,n^{m+1}} = \sum _{n=m+1}^{\infty } \frac{\big |S_1(n,m+1)\big |}{n!\,n^{k}}. \end{aligned}$$

Furthermore, the MacLaurin series expansion of \(\mathrm{e}^z\) with \(z=\ln (1-x)\) gives

$$\begin{aligned} x + \ln (1-x) = - \sum _{k=1}^{\infty }\frac{\ln ^{k+1}(1-x)}{(k+1)!},\qquad x<1. \end{aligned}$$

Hence

$$\begin{aligned} \int \limits _0^1 \left\{ \frac{1}{\ln (1-x)}+ \frac{1}{x} \right\} \ln ^{m} x\; \mathrm{d}x&= - \int \limits _0^1 \sum _{k=1}^{\infty }\frac{\ln ^{k+1}(1-x)}{(k+1)!}\cdot \frac{\ln ^m x}{\ln (1-x)}\cdot \frac{\mathrm{d}x}{x}\\&= - \sum _{k=1}^{\infty } \frac{{\varOmega }(k,m)}{(k+1)!} \, \\&= (-1)^m m! \sum _{k=1}^{\infty } \frac{(-1)^{k+1}}{(k+1)} \sum _{n=m+1}^{\infty } \frac{\big |S_1(n,m+1)\big |}{n!\,n^{k}}, \end{aligned}$$

which is identical with (31) if setting \(m=p\). Furthermore, it is well known that

$$\begin{aligned} \frac{\big |S_1(n+1,m+1)\big |}{n!}\, =\, P_{m}\big (H_{n}^{(1)}, -H_{n}^{(2)},\ldots , (-1)^{m-1}H_{n}^{(m)}\big ), \end{aligned}$$

see [17, p. 217], [37, p. 1395], [31, p. 425, Eq. (43)], [4, Eq. (16)], which immediately gives (32) and completes the proof.\(\square \)

Proof of formula (33)

This formula straightforwardly follows from the fact that \(\kappa _p=F_p(1)\), see [11, p. 307, 318 et seq.], where \(F_{p}(s)\) is the special function defined by

$$\begin{aligned} F_p(s) := \sum _{n=1}^{\infty } \frac{|G_{n}|}{n^{p}} D\left( \frac{1}{\,x^s}\right) (n) = \sum _{n=0}^\infty \frac{|G_{n+1}|}{(n+1)^p}\sum _{k=0}^{n} (-1)^k \left( {\begin{array}{c}n\\ k\end{array}}\right) (k+1)^{-s}. \end{aligned}$$

\(\square \)

Proof of formulas (37) and (38)

These formulas immediately follow from [10, Eqs. (3.21) and (3.23)] and (36). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blagouchine, I.V., Coppo, MA. A note on some constants related to the zeta-function and their relationship with the Gregory coefficients. Ramanujan J 47, 457–473 (2018). https://doi.org/10.1007/s11139-018-9991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-018-9991-0

Keywords

Mathematics Subject Classification

Navigation