Skip to main content
Log in

A modular-type formula for \((x;q)_\infty \)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(q=\text {e}^{2\pi i\tau }, \mathfrak {I}\tau >0\), \(x=\text {e}^{2\pi i{z}}\), \({z}\in \mathbb {C}\), and \((x;q)_\infty =\prod _{n\ge 0}(1-xq^n)\). Let \((q,x)\mapsto ({q_1},{x_1})\) be the classical modular substitution given by the relations \({q_1}=\text {e}^{-2\pi i/\tau }\) and \({x_1}=\text {e}^{2\pi i{z}/{\tau }}\). The main goal of this paper is to give a modular-type representation for the infinite product \((x;q)_\infty \), this means, to compare the function defined by \((x;q)_\infty \) with that given by \(({x_1};{q_1})_\infty \). Inspired by the work (Stieltjes in Collected Papers, Springer, New York, 1993) of Stieltjes on semi-convergent series, we are led to a “closed” analytic formula for the ratio \((x;q)_\infty /({x_1};{q_1})_\infty \) by means of the dilogarithm combined with a Laplace type integral, which admits a divergent series as Taylor expansion at \(\log q=0\). Thus, the function \((x;q)_\infty \) is linked with its modular transform \(({x_1};{q_1})_\infty \) in such an explicit manner that one can directly find the modular formulae known for Dedekind’s Eta function, Jacobi Theta function, and also for certain Lambert series. Moreover, one can remark that our results allow Ramanujan’s formula (Berndt in Ramanujan’s notebooks, Springer, New York, 1994, Entry 6’, p. 268) (see also Ramanujan in Notebook 2, Tata Institute of Fundamental Research, Bombay, 1957, p. 284) to be completed as a convergent expression for the infinite product \((x;q)_\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Apostol, T.M.: Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17, 147–157 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apostol, T.M.: Elementary proof of the transformation formula for Lambert series involving generalized Dedekind sums. J. Number Theory 15(1), 14–24 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory, 2nd edn. GTM 41. Springer, New York (1990)

  6. Barnes, E.W.: The theory of the double gamma function. Philos. Trans. R. Soc. Lond. A 196, 265–388 (1901)

    Article  MATH  Google Scholar 

  7. Berndt, B.C.: Ramanujan’s Notebooks, Part IV. Springer, New York (1994)

  8. Birkhoff, G.D.: The generalized Riemann problem for linear differential equations and the allied problems for linear difference and \(q\)-difference equations. Proc. Am. Acad. 49, 521–568 (1913)

    Article  MATH  Google Scholar 

  9. Di Vizio, L., Ramis, J.-P., Sauloy, J., Zhang, C.: Équations aux \(q\)-différences. Gaz. Math. (SMF) 96, 20–49 (2003)

    MATH  Google Scholar 

  10. Euler, L.: Introducio in Analysin Infinitorum. Bousquet, Lausanne (1748)

  11. Guinand, A.P.: On Poisson’s summation formula. Ann. Math. 42(2), 591–603 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guinand, A.P.: Functional equations and self-reciprocal functions connected with Lambert series. Q. J. Math. Oxf. Ser. 15, 11–23 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hardy, G.H.: Ramanujan, Twelve Lectures on Subjects Suggested by His Life and Work, Chelsea Publishing Company (originally published by Cambridge University Press), New York (1940)

  14. Ismail, M.E.H., Zhang, C.: Zeros of entire functions and a problem of Ramanujan. Adv. Math. 209, 363–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jackson, F.H.: The basic gamma-function and the elliptic functions. Proc. R. Soc. Lond. A 76, 127–144 (1905)

    Article  MATH  Google Scholar 

  16. Martinet, J., Ramis, J.-P.: Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Inst. Hautes Études Sci. Publ. Math. 55, 63–164 (1982)

    Article  MATH  Google Scholar 

  17. McIntosh, R.J.: Some asymptotic formulae for \(q\)-shifted factorials. Ramanujan J. 3, 205–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ramanujan, S.: In: Hardy, G.H., Seshu Aiyar, P.V., Wilson, B.M. (eds.) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Company, New York (Second printing of the 1927 original) (1927)

  19. Ramanujan, S.: Notebook 2. Tata Institute of Fundamental Research, Bombay (1957, reprint by Springer) (1984)

  20. Ramis, J.-P.: Séries divergentes et théories asymptotiques. Bull. Soc. Math. Fr. 121 (Panoramas et Synthèses, suppl.), 74 (1993)

  21. Ramis, J.-P., Sauloy, J., Zhang, C.: Local analytic classification of \(q\)-difference equations. http://front.math.ucdavis.edu/0903.0853. arXiv: 0903.0853 (2009)

  22. Sauloy, J.: Galois theory of Fuchsian \(q\)-difference equations. Ann. Sci. École Norm. Sup. 36, 925–968 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Selberg, A.: Reflections on Ramanujan centenary. In: Berndt, B.C., Rankin, R.A. (eds.) Ramanujan: Essays and Surveys, pp. 203–214. History of Mathematics 22. Hindustan Book Agency, New Delhi (1989)

  24. Serre, J.-P.: Cours d’arithmétique. Deuxième édition revue et corrigé. Presses Universitaires de France, Paris (1977)

  25. Shintani, T.: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1), 167–199 (1977)

    MathSciNet  MATH  Google Scholar 

  26. Siegel, C.L.: A simple proof of \(\eta (-1/\tau )=\eta (\tau ){\sqrt{\tau /2}}\). Mathematica 1, 4 (1954)

    Google Scholar 

  27. Stieltjes, T.J.: Collected Papers, vol. II. Springer, New York (1993)

    MATH  Google Scholar 

  28. Titchmarsh, E.C.: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1937)

    MATH  Google Scholar 

  29. Ueno, K., Nishizawa, M.: Mltiple gamma functions and multiple \(q\)-gamma functions. Publ. RIMS 33, 813–838 (1997)

    Article  MATH  Google Scholar 

  30. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Reprinted Cambridge University Press, New York (1962)

  31. Zagier, D.: The dilogarithm function in geometry and number theory. In: Number Theory and Related Topics, vol. 12, pp. 231–249. Tata Institute of Fundamental Research Studies in Mathematics/Oxford University Press, Bombay/Oxford (1989)

  32. Zhang, C.: Développements asymptotiques \(q\)-Gevrey et séries \(Gq\)-sommables. Ann. Inst. Fourier 49, 227–261 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, C.: Sur les fonctions \(q\)-Bessel de Jackson. J. Approx. Theory 122, 208–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, C.: On the modular behaviour of the infinite product \((1-x)(1-xq)(1-xq^2)(1-xq^3)...\), C. R. Acad. Sci. Paris Ser. I 349, 725–730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, S., Luo, Z., Zhang, C.: On summability of formal solutions to a Cauchy problem and generalization of Mordell’s theorem. C. R. Math. Acad. Sci. Paris 348, 753–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express thanks to Lucia Di Vizio, Anne Duval, Jean-Pierre Ramis, and Jacques Sauloy for their numerous valuable suggestions and remarks, and express thanks to the referee for the formulae in (1.3) and (1.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changgui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C. A modular-type formula for \((x;q)_\infty \) . Ramanujan J 46, 269–305 (2018). https://doi.org/10.1007/s11139-017-9967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-017-9967-5

Keywords

Mathematics Subject Classification

Navigation