Skip to main content
Log in

Eichler’s commutation relation and some other invariant subspaces of Hecke operators

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, S., Lam, H.Y.: On the Diophantine equation \(n^2=x^2+by^2+cz^2\). J. Number Theory 133(2), 719–737 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Eichler, M.: Quadratische Formen und orthogonale Gruppen. Springer, Berlin (1974). Zweite Auflage, Die Grundlehren der mathematischen Wissenschaften, Band 63

    Book  MATH  Google Scholar 

  3. Guo, X., Peng, Y., Qin, H.: On the representation numbers of ternary quadratic forms and modular forms of weight 3/2. J. Number Theory 140, 235–266 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kitaoka, Y.: Arithmetic of Quadratic Forms. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  5. O’Meara, O.T.: Introduction to Quadratic Forms. Classics in Mathematics. Springer, Berlin (2000) (Reprint of the 1973 edition)

  6. Ponomarev, P.: Ternary quadratic forms and Shimura’s correspondence. Nagoya Math. J. 81, 123–151 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rallis, S.: The Eichler commutation relation and the continuous spectrum of the Weil representation. In: Noncommutative Harmonic Analysis (Proc. Third Colloq., Marseille-Luminy, 1978), Lecture Notes in Mathematics, vol. 728, pp. 211–244. Springer, Berlin (1979)

  8. Schulze-Pillot, R.: Thetareihen positiv definiter quadratischer Formen. Invent. Math. 75(2), 283–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Walling, L.H.: Hecke operators on theta series attached to lattices of arbitrary rank. Acta Arith. 54(3), 213–240 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wang, X., Pei, D.: Modular Forms with Integral and Half-Integral Weights. Science Press and Springer, Beijing and Heidelberg (2012)

    Book  MATH  Google Scholar 

  11. Zhuravlëv, V.G.: Multiplicative arithmetic of theta series for odd quadratic forms. Izv. Ross. Akad. Nauk Ser. Mat. 59(3), 77–140 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hourong Qin.

Additional information

This work was supported by NSFC (Nos. 11571163, 11171141, 11471154) and PAPD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Qin, H. Eichler’s commutation relation and some other invariant subspaces of Hecke operators. Ramanujan J 44, 367–383 (2017). https://doi.org/10.1007/s11139-016-9831-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9831-z

Keywords

Mathematics Subject Classification

Navigation