Skip to main content
Log in

Linear recurrence sequences and periodicity of multidimensional continued fractions

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Multidimensional continued fractions generalize classical continued fractions with the aim of providing periodic representations of algebraic irrationalities by means of integer sequences. We provide a characterization for periodicity of Jacobi–Perron algorithm by means of linear recurrence sequences. In particular, we prove that partial quotients of a multidimensional continued fraction are periodic if and only if numerators and denominators of convergents are linear recurrence sequences, generalizing similar results that hold for classical continued fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, L.: The Jacobi–Perron Algorithm—Its Theory and Application. Lectures Notes in Mathematics, vol. 207. Springer, Berlin (1971)

    MATH  Google Scholar 

  2. Bernstein, L.: Units from periodic Jacobi–Perron algorithms in algebraic number fields of degree \(n>2\). Manuscr. Math. 14(3), 249–261 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cerruti, U., Vaccarino, F.: R-algebras of linear recurrent sequences. J. Algebra 175(1), 332–338 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dasaratha, K., Flapan, L., Garrity, T., Lee, C., Mihaila, C., Neumann-Chun, N., Peluse, N.S., Stoffregen, M.: Cubic irrationals and periodicity via a family of multi-dimensional continued fraction algorithms. Monatsh. Math. 174(4), 549–556 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dasaratha, K., Flapan, L., Garrity, T., Lee, C., Mihaila, C., Neumann-Chun, N., Peluse, N.S., Stoffregen, M.: A generalized family of multidimensional continued fractions: TRIP Maps. Int. J. Number Theory 10(8), 2151–2186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daus, P.H.: Normal ternary continued fraction expansions for the cube roots of integers. Am. J. Math. 44(4), 279–296 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daus, P.H.: Normal ternary continued fraction expansions for cubic irrationalities. Am. J. Math. 51(1), 67–98 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  8. German, O.N., Lakshtanov, E.L.: On a multidimensional generalization of Lagrange’s theorem for continued fractions. Izv. Math. 72(1), 47–61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hendy, M.D., Jeans, N.S.: The Jacobi–Perron algorithm in integer form. Math. Comput. 36(154), 565–574 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hermite, C.: Extraits de lettres de M. Ch. Hermite a M. Jacobi sur differents objets de la theorie des nombres. J. Reine Angew. Math. 40, 286 (1850)

    Google Scholar 

  11. Jacobi, C.G.J.: Ges. Werke, vol. VI, pp. 385–426. Berlin Academy (1891)

  12. Karpenkov, O.: Constructing multidimensional continued fractions in the sense of Klein. Math. Comput. 78(267), 1687–1711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karpenkov, O.: Geometry of Continued Fractions, Algorithms and Computation in Mathematics, vol. 26. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  14. Lachaud, G.: Poyedre d’Arnold et voile cone simpicial: analogues du theorem de Lagrange. C. R. Acad. Sci. Paris Ser. I Math. 317(8), 711–716 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Lehmer, D.N.: Inverse ternary continued fractions. Bull. Am. Math. Soc. 37(8), 565–569 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lenstra, H.W., Shallit, J.O.: Continued fractions and linear recurrences. Math. Comput. 61(203), 351–354 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Murru, N.: On the periodic writing of cubic irrationals and a generalization of Rédei functions. Int. J. Number Theory 11(3), 779–799 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Perron, O.: Grundlagen fur eine theorie des Jacobischen kettenbruchalgorithmus. Math. Ann. 64, 1–76 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raju, N.S.: Periodic Jacobi–Perron algorithms and fundamental units. Pac. J. Math. 64(1), 241–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schweiger, F.: Brun meets Selmer. Integers 13, A17 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Tamura, J., Yasutomi, S.: A new multidimensional continued fraction algorithm. Math. Comput. 78(268), 2209–2222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Van der Poorten, A.J.: p-adic methods in the study of Taylor coefficients of rational functions. Bull. Aust. Math. Soc. 29, 109–117 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Williams, H.C., Dueck, G.W.: An analogue of the nearest integer continued fraction for certain cubic irrationalities. Math. Comput. 42(166), 683–705 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Umberto Cerruti for introducing me to these beautiful problems. Thanks to the anonymous referee whose comments improved the readability and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Murru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murru, N. Linear recurrence sequences and periodicity of multidimensional continued fractions. Ramanujan J 44, 115–124 (2017). https://doi.org/10.1007/s11139-016-9820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9820-2

Keywords

Mathematics Subject Classification

Navigation