Skip to main content
Log in

Roots of unity and torsion points of abelian varieties

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We answer a question raised by Hindry and Ratazzi concerning the intersection between cyclotomic extensions of a number field K and extensions of K generated by torsion points of an abelian variety over K. We prove that the property called \((\mu )\) in Hindry and Ratazzi (J Ramanujan Math Soc 25(1):81–111, 2010) holds for any abelian variety, while the same is not true for the stronger version of the property introduced in Hindry and Ratazzi (J Inst Math Jussieu 11(1):27–65, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borovoĭ, M.V.: The action of the Galois group on the rational cohomology classes of type \((p,\,p)\) of abelian varieties. Mat. Sb. (N.S.) 94(136), 649–652, 656 (1974)

  2. Deligne, P., Milne, J.S., Ogus, A., Shih, K.: Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, vol. 900. Springer, Berlin (1982)

    MATH  Google Scholar 

  3. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983). doi:10.1007/BF01388432

    Article  MathSciNet  MATH  Google Scholar 

  4. Hindry, M., Ratazzi, N.: Torsion dans un produit de courbes elliptiques. J. Ramanujan Math. Soc. 25(1), 81–111 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Hindry, M., Ratazzi, N.: Points de torsion sur les variétés abéliennes de type GSp. J. Inst. Math. Jussieu 11(1), 27–65 (2012). doi:10.1017/S147474801000023X

    Article  MathSciNet  MATH  Google Scholar 

  6. Hindry, M., Ratazzi, N.: Torsion pour les variétés abéliennes de type I et II. ArXiv e-prints (2015)

  7. Jelonek, Z.: On the effective Nullstellensatz. Invent. Math. 162(1), 1–17 (2005). doi:10.1007/s00222-004-0434-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1(4), 963–975 (1988). doi:10.2307/1990996

    Article  MathSciNet  MATH  Google Scholar 

  9. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 555–563 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002). Translated from the French by Reinie Erné, Oxford Science Publications

    Google Scholar 

  11. Milne, J.S.: Basic theory of affine group schemes (2012). Available at www.jmilne.org/math/

  12. Moonen, B.J.J., Zarhin, Y.G.: Hodge and Tate classes on simple abelian fourfolds. Duke Math. J. 77, 553–581 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mumford, D.: A note of Shimura’s paper “Discontinuous groups and abelian varieties”. Math. Ann. 181, 345–351 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pjateckiĭ-Šapiro, I.I.: Interrelations between the Tate and Hodge hypotheses for abelian varieties. Mat. Sb. (N.S.) 85(127), 610–620 (1971)

  15. Serre, J.P.: Letter to K. Ribet, January 29\(^{\rm th}\), 1981. Œuvres. Collected Papers, vol. IV. Springer, Berlin (2000)

    Google Scholar 

  16. Serre, J.P.: Letter to K. Ribet, March 7\(^{\rm th}\), 1986. Œuvres. Collected Papers, vol. IV. Springer, Berlin (2000)

    Google Scholar 

  17. Serre, J.P.: Letter to M-F. Vigneras, January 1\(^{\rm st}\), 1983. Œuvres. Collected Papers, vol. IV. Springer, Berlin (2000)

    Google Scholar 

  18. Ullmo, E., Yafaev, A.: Mumford-Tate and generalised Shafarevich conjectures. Ann. Math. Québec 37(2), 255–284 (2013). doi:10.1007/s40316-013-0009-4

    Article  MathSciNet  MATH  Google Scholar 

  19. Vasiu, A.: Some cases of the Mumford-Tate conjecture and Shimura varieties. Indiana Univ. Math. J. 57(1), 1–75 (2008). doi:10.1512/iumj.2008.57.3513

    Article  MathSciNet  MATH  Google Scholar 

  20. Wallach, N.R.: On a theorem of Milnor and Thom. Topics in Geometry. Progress in Nonlinear Differential Equations Applications, vol. 20, pp. 331–348. Birkhäuser, Boston (1996)

    Google Scholar 

  21. Waterhouse, W.C.: Introduction to Affine Group Schemes. Graduate Texts in Mathematics, vol. 66. Springer, New York (1979)

    Book  Google Scholar 

  22. Wintenberger, J.P.: Démonstration d’une conjecture de Lang dans des cas particuliers. J. Reine Angew. Math. 553, 1–16 (2002). doi:10.1515/crll.2002.099

    MathSciNet  MATH  Google Scholar 

  23. Zarhin, Y.G.: Abelian varieties, \(\ell \)-adic representations and Lie algebras. Rank independence on \(\ell \). Invent. Math. 55(2), 165–176 (1979). doi:10.1007/BF01390088

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Nicolas Ratazzi for attracting his interest to the problem considered in this paper. He also thanks Antonella Perucca for useful discussions and for pointing out Example 2, and the anonymous referee for suggesting that Theorem 1 could be made independent of the truth of the Mumford–Tate conjecture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Lombardo.

Additional information

The author was supported by the Fondation Mathématique Jacques Hadamard, Grant “investissements d’avenir”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardo, D. Roots of unity and torsion points of abelian varieties. Ramanujan J 43, 383–403 (2017). https://doi.org/10.1007/s11139-016-9813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9813-1

Keywords

Mathematics Subject Classification

Navigation