Skip to main content
Log in

Shifted convolution of cusp-forms with \(\theta \)-series

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper we apply some simple approaches to improve a recent result of Luo on the shifted convolution sum of the Fourier coefficients of a cusp form and a theta series. A mean square formula is established in order to explore the right order of magnitude of this shifted convolution sum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Luo’s proof seems to only give that \(g_{\ell }\) is the smallest integer strictly greater than \((\ell +1)/2\). This means \(\vartheta _{3}=\tfrac{1}{8}\) and \(\vartheta _{5}=\tfrac{1}{5}\) instead of \(\vartheta _{3}=\tfrac{1}{6}\) and \(\vartheta _{5}=\tfrac{1}{4}\).

  2. The symbols \(F(x) = \Omega _{+}(G(x))\), \(F(x) = \Omega _{-}(G(x))\) and \(F(x) = \Omega (G(x))\) (as \(x\rightarrow \infty \)) mean that \(\displaystyle \limsup _{x\rightarrow \infty } F(x)/G(x)>0\), \(\displaystyle \limsup _{x\rightarrow \infty } \,(-F(x))/G(x)>0\) and \(\displaystyle \limsup _{x\rightarrow \infty } |F(x)|/G(x)>0\), respectively.

References

  1. Bateman, P.T.: On the representations of a number as the sum of three squares. Trans. Am. Math. Soc. 71, 70–101 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deshouillers, J.-M., Iwaniec, H.: An additive divisor problem. J. Lond. Math. Soc. 26(2), 1–14 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duke, W., Iwaniec, H.: Bilinear forms in the Fourier coefficients of half-integral weight cusp forms and sums over primes. Math. Ann. 286, 783–802 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hafner, J.L., Ivić, A.: On sums of Fourier coefficients of cusp forms. Enseign. Math. 35(3–4), 375–382 (1989)

    MathSciNet  MATH  Google Scholar 

  5. Harcos, G., Michel, P.: The subconvexity problem for Rankin–Selberg \(L\)-functions and equidistribution of Heegner points. II. Invent. Math. 163, 581–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hardy, G.H.: Representation of a number as the sum of squares. Trans. Am. Math. Soc. 17, 255–284 (1920)

    Article  MATH  Google Scholar 

  7. Heath-Brown, D.R.: The twelfth power moment of the Riemann zeta-function. Quart. J. Math. Oxford 29, 443–462 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Holowinsky, R.: A sieve method for shifted convolution sums. Duke Math. J. 146(3), 401–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ingham, A.E.: Some asymptotic formulae in the theory of numbers. J. Lond. Math. Soc. 2, 202–208 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ivić, A., Motohashi, Y.: On some estimates involving the binary additive divisor problem. Quart. J. Math. Oxford 46, 471–483 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  12. Iwaniec, H.: Spectral Methods of Automorphic Forms, 2nd edn. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  13. Jutila, M.: A method in the theory of exponential sums. Tata Institute of Fundamental Research, Bombay Lectures No. 80. Springer-Verlag, Berlin-Heidelberg-New York (1987)

  14. Jutila, M.: On exponential sums involving the Ramanujan function. Proc. Indian Acad. Sci. (Math. Sci.) 97(1–3), 157–166 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jutila, M.: The Additive Divisor Problem and Exponential Sums. Advances in Number Theory. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  16. Jutila, M.: The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I. Math. Z. 223(3), 435–461 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jutila, M.: The additive divisor problem and its analogs for Fourier coefficients of cusp forms. II. Math. Z. 225, 625–637 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lü, G.: The average value of Fourier coefficients of cusp forms in arithmetic progressions. J. Number Theory 129, 477–487 (2009)

    Article  MathSciNet  Google Scholar 

  19. Luo, W.: Shifted convolution of cusp-forms with \(\theta \)-series. Abh. Math. Semin. Univ. Hambg. 81, 45–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meurman, T.: On the Binary Additive Divisor Problem, Number Theory (Turku, 1999), pp. 223–246. de Gruyter, Berlin (2001)

    MATH  Google Scholar 

  21. Motohashi, Y.: The binary additive divisor problem. Ann. Sci. Ec. Norm. Supér. 27, 529–572 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Smith, R.A.: Fourier coefficients of modular forms over arithmetic progressions. I, II. With remarks by M. R. Murty. C. R. Math. Rep. Acad. Sci. Canada 15(2–3), 91–98 (1993). 85-90

    Google Scholar 

  23. Walfisz, A.: Über Gitterpunkte in mehrdimensional Ellipsoiden, VIII. Trudy Tbil. Math. Inst. 5, 1–65 (1938)

    MATH  Google Scholar 

  24. Wu, J.: Power sums of Hecke eigenvalues and applications. Acta Arith. 137, 333–344 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referee for his remarks and careful reading. In particular, he indicated: (a) Concerning the foot note on p. 2, the results in [19] are in fact correct as stated since one can just simply split the \(n\)-sum as \(\sum _{n\leqslant X^A} + \sum _{n>X^A}\) for sufficiently large \(A>0\), and bound the tail using instead \(p=g_l+1\) in the notation of [19]. (b) In view of the simple identity \(\lambda _f(mn) = \sum _{d\mid (m, n)} \mu (d) \lambda _f(m/d)\lambda _f(n/d)\), Lemma 3.1 follows trivially, where \(\mu (n)\) is the Möbius function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu.

Additional information

Guangshi Lü is supported in part by the National Natural Science Foundation of China (11031004, 11171182), NCET (NCET-10-0548) and Shandong Province Natural Science Foundation for distinguished Young Scholars (JQ201102). The first two authors are supported in part by IRT1264. This work was completed when Jie Wu visited China University of Mining and Technology in 2013. He would like to thank the institute for the pleasant working conditions. Wenguang Zhai is supported by the National Key Basic Research Program of China (Grant No. 2013CB834201), the Natural Science Foundation of China (Grant No. 11171344) and the Natural Science Foundation of Beijing (Grant No. 1112010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, G., Wu, J. & Zhai, W. Shifted convolution of cusp-forms with \(\theta \)-series. Ramanujan J 40, 115–133 (2016). https://doi.org/10.1007/s11139-015-9678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9678-8

Keyword

Mathematics Subject Classification

Navigation