Skip to main content
Log in

Measuring health-related quality of life in children with suspected genetic conditions: validation of the PedsQL proxy-report versions

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

Measuring health-related quality of life (HRQoL) of children with suspected genetic conditions is important for understanding the effect of interventions such as genomic sequencing (GS). The Pediatric Quality of Life Inventory (PedsQL) is a widely used generic measure of HRQoL in pediatric patients, but its psychometric properties have not yet been evaluated in children undergoing diagnostic GS.

Methods

In this cross-sectional study, we surveyed caregivers at the time of their child’s enrollment into GS research studies as part of the Clinical Sequencing Evidence Generating Research (CSER) consortium. To evaluate structural validity of the PedsQL 4.0 Generic Core Scales and PedsQL Infant Scales parent proxy-report versions, we performed a confirmatory factor analysis of the hypothesized factor structure. To evaluate convergent validity, we examined correlations between caregivers’ reports of their child’s health, assessed using the EQ VAS, and PedsQL scores by child age. We conducted linear regression analyses to examine whether age moderated the association between caregiver-reported child health and PedsQL scores. We assessed reliability using Cronbach’s alpha.

Results

We analyzed data for 766 patients across all PedsQL age group versions (1–12 months through 13–18 years). Model fit failed to meet criteria for good fit, even after modification. Neither age group (categorical) nor age (continuous) significantly moderated associations between PedsQL scores and caregiver-reported child health. Cronbach’s alphas indicated satisfactory internal consistency for most PedsQL scales.

Conclusion

The PedsQL Generic Core Scales and Infant Scales may be appropriate to measure HRQoL in pediatric patients with suspected genetic conditions across a wide age range. While we found evidence of acceptable internal consistency and preliminary convergent validity in this sample, there were some potential problems with structural validity and reliability that require further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vissers, L. E. L. M., van Nimwegen, K. J. M., Schieving, J. H., Kamsteeg, E.-J., Kleefstra, T., Yntema, H. G., et al. (2017). A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genetics in Medicine, 19, 1055. https://doi.org/10.1038/gim.2017.1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meng, L., Pammi, M., Saronwala, A., Magoulas, P., Ghazi, A. R., Vetrini, F., et al. (2017). Use of exome sequencing for infants in intensive care units: Ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatrics, 171, e173438. https://doi.org/10.1001/jamapediatrics.2017.3438

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shickh, S., Mighton, C., Uleryk, E., Pechlivanoglou, P., & Bombard, Y. (2021). The clinical utility of exome and genome sequencing across clinical indications: A systematic review. Human Genetics, 140, 1403–1416. https://doi.org/10.1007/s00439-021-02331-x

    Article  PubMed  Google Scholar 

  4. Pal, D. K. (1996). Quality of life assessment in children: A review of conceptual and methodological issues in multidimensional health status measures. Journal of Epidemiology and Community Health, 50, 391–396. https://doi.org/10.1136/jech.50.4.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vivier, P. M., Bernier, J. A., & Starfield, B. (1994). Current approaches to measuring health outcomes in pediatric research. Current Opinion in Pediatrics, 6, 530–537. https://doi.org/10.1097/00008480-199410000-00005

    Article  CAS  PubMed  Google Scholar 

  6. Varni, J. W., Seid, M., & Rode, C. A. (1999). The PedsQL™: Measurement model for the pediatric quality of life inventory. Medical Care, 37, 126–139. https://doi.org/10.1097/00005650-199902000-00003

    Article  CAS  PubMed  Google Scholar 

  7. Smith, H. S., Ferket, B. S., Gelb, B. D., Hindorff, L., Ferar, K. D., Norton, M. E., et al. (2023). Parent-reported clinical utility of pediatric genomic sequencing. Pediatrics, 152, e2022060318. https://doi.org/10.1542/peds.2022-060318

    Article  PubMed  Google Scholar 

  8. Krantz, I. D., Medne, L., Weatherly, J. M., Wild, K. T., Biswas, S., NICUSeq Study Group, et al. (2021). Effect of whole-genome sequencing on the clinical management of acutely ill infants with suspected genetic disease: A randomized clinical trial. JAMA Pediatrics, 175, 1218–1226. https://doi.org/10.1001/jamapediatrics.2021.3496

    Article  PubMed  Google Scholar 

  9. Perry, J., Redfield, S., Oza, A., Rouse, S., Stewart, C., Khela, H., et al. (2022). Exome sequencing expands the genetic diagnostic spectrum for pediatric hearing loss. The Laryngoscope. https://doi.org/10.1002/lary.30507

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haviland, I., Daniels, C. I., Greene, C. A., Drew, J., Love-Nichols, J. A., Swanson, L. C., et al. (2023). Genetic diagnosis impacts medical management for pediatric epilepsies. Pediatric Neurology, 138, 71–80. https://doi.org/10.1016/j.pediatrneurol.2022.10.006

    Article  PubMed  Google Scholar 

  11. Ayres, S., Gallacher, L., Stark, Z., & Brett, G. R. (2019). Genetic counseling in pediatric acute care: Reflections on ultra-rapid genomic diagnoses in neonates. Journal of Genetic Counseling, 28, 273–282. https://doi.org/10.1002/jgc4.1086

    Article  PubMed  Google Scholar 

  12. Smith, H. S., Swint, J. M., Lalani, S. R., Yamal, J.-M., de Oliveira Otto, M. C., Castellanos, S., et al. (2019). Clinical application of genome and exome sequencing as a diagnostic tool for pediatric patients: A scoping review of the literature. Genetics in Medicine, 21, 3–16. https://doi.org/10.1038/s41436-018-0024-6

    Article  CAS  PubMed  Google Scholar 

  13. Callahan, K. P., Mueller, R., Flibotte, J., Largent, E. A., & Feudtner, C. (2022). Measures of utility among studies of genomic medicine for critically ill infants: A systematic review. JAMA Network Open, 5, e2225980–e2225980. https://doi.org/10.1001/jamanetworkopen.2022.25980

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grosse, S. D., & Khoury, M. J. (2006). What is the clinical utility of genetic testing? Genetics in Medicine, 8, 448–450. https://doi.org/10.1097/01.gim.0000227935.26763.c6

    Article  PubMed  Google Scholar 

  15. Foster, M. W., Mulvihill, J. J., & Sharp, R. R. (2009). Evaluating the utility of personal genomic information. Genetics in Medicine, 11, 570–574.

    Article  PubMed  Google Scholar 

  16. Hayeems, R. Z., Luca, S., Ungar, W. J., Venkataramanan, V., Tsiplova, K., Bashir, N. S., et al. (2022). The clinician-reported genetic testing utility InDEx (C-GUIDE): Preliminary evidence of validity and reliability. Genetics in Medicine, 24, 430–438. https://doi.org/10.1016/j.gim.2021.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Hayeems, R. Z., Dimmock, D., Bick, D., Belmont, J. W., Green, R. C., Lanpher, B., et al. (2020). Clinical utility of genomic sequencing: A measurement toolkit. NPJ Genomic Medicine, 5, 1–11.

    Article  Google Scholar 

  18. Green, R. C., Shah, N., Genetti, C. A., Yu, T., Zettler, B., Uveges, M. K., et al. (2023). Actionability of unanticipated monogenic disease risks in newborn genomic screening: Findings from the BabySeq Project. American Journal of Human Genetics, 110, 1034–1045. https://doi.org/10.1016/j.ajhg.2023.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linder, J. E., Tao, R., Chung, W. K., Kiryluk, K., Liu, C., Weng, C., et al. (2023). Prospective, multi-site study of healthcare utilization after actionable monogenic findings from clinical sequencing. American Journal of Human Genetics, 110, 1950–1958. https://doi.org/10.1016/j.ajhg.2023.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Kohler, J. N., Turbitt, E., Lewis, K. L., Wilfond, B. S., Jamal, L., Peay, H. L., et al. (2017). Defining personal utility in genomics: A Delphi study. Clinical Genetics, 92, 290–297. https://doi.org/10.1111/cge.12998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, H. S., Brothers, K. B., Knight, S. J., Ackerman, S. L., Rini, C., Veenstra, D. L., et al. (2021). Conceptualization of utility in translational clinical genomics research. American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2021.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith, H. S., Morain, S. R., Robinson, J. O., Canfield, I., Malek, J., Rubanovich, C. K., et al. (2022). Perceived utility of genomic sequencing: Qualitative analysis and synthesis of a conceptual model to inform patient-centered instrument development. Patient - Patient-Centered Outcomes Research, 15, 317–328. https://doi.org/10.1007/s40271-021-00558-4

    Article  PubMed  Google Scholar 

  23. Turbitt, E., Kohler, J. N., Angelo, F., Miller, I. M., Lewis, K. L., Goddard, K. A. B., et al. (2023). The PrU: Development and validation of a measure to assess personal utility of genomic results. Genetics in Medicine, 25, 100356. https://doi.org/10.1016/j.gim.2022.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Buchanan, J., & Wordsworth, S. (2019). Evaluating the outcomes associated with genomic sequencing: A roadmap for future research. PharmacoEconomics - Open, 3, 129–132. https://doi.org/10.1007/s41669-018-0101-4

    Article  PubMed  Google Scholar 

  25. Ow, N., & Mayo, N. E. (2020). Health-related quality of life scores of typically developing children and adolescents around the world: A meta-analysis with meta-regression. Quality of Life Research, 29, 2311–2332. https://doi.org/10.1007/s11136-020-02519-0

    Article  PubMed  Google Scholar 

  26. Pinquart, M. (2020). Health-related quality of life of young people with and without chronic conditions. Journal of Pediatric Psychology, 45, 780–792. https://doi.org/10.1093/jpepsy/jsaa052

    Article  PubMed  Google Scholar 

  27. Varni, J. W., Seid, M., & Kurtin, P. S. (2001). PedsQLTM 4.0: Reliability and validity of the pediatric quality of life InventoryTM Version 4.0 generic core scales in healthy and patient populations. Medical Care, 39, 800–812. https://doi.org/10.1097/00005650-200108000-00006

    Article  CAS  PubMed  Google Scholar 

  28. Varni, J. W., Limbers, C. A., Neighbors, K., Schulz, K., Lieu, J. E. C., Heffer, R. W., et al. (2011). The PedsQL™ Infant Scales: Feasibility, internal consistency reliability, and validity in healthy and ill infants. Quality of Life Research, 20, 45–55. https://doi.org/10.1007/s11136-010-9730-5

    Article  PubMed  Google Scholar 

  29. Desai, A. D., Zhou, C., Stanford, S., Haaland, W., Varni, J. W., & Mangione-Smith, R. M. (2014). Validity and responsiveness of the pediatric quality of life inventory (PedsQL) 4.0 generic core scales in the pediatric inpatient setting. JAMA Pediatrics, 168, 1114. https://doi.org/10.1001/jamapediatrics.2014.1600

    Article  PubMed  Google Scholar 

  30. Varni, J. W., Burwinkle, T. M., Seid, M., & Skarr, D. The PedsQL* 4.0 as a pediatric population health measure: Feasibility, reliability, and validity. Ambul Pediatr n.d.

  31. Varni, J. W., Limbers, C. A., & Burwinkle, T. M. (2007). How young can children reliably and validly self-report their health-related quality of life? An analysis of 8,591 children across age subgroups with the PedsQLTM 4.0 Generic Core Scales. Health and Quality of Life Outcomes, 5, 1. https://doi.org/10.1186/1477-7525-5-1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Varni, J. W., Limbers, C. A., & Burwinkle, T. M. (2007). Parent proxy-report of their children’s health-related quality of life: An analysis of 13,878 parents’ reliability and validity across age subgroups using the PedsQLTM 4.0 Generic Core Scales. Health and Quality of Life Outcomes, 5, 2. https://doi.org/10.1186/1477-7525-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Splinter, K., Niemi, A.-K., Cox, R., Platt, J., Shah, M., Enns, G. M., et al. (2016). Impaired health-related quality of life in children and families affected by methylmalonic acidemia. Journal of Genetic Counseling, 25, 936–944.

    Article  PubMed  Google Scholar 

  34. Vanz, A. P., van de Sande, L. J., Pinheiro, B., Zambrano, M., Brizola, E., da Rocha, N. S., et al. (2018). Health-related quality of life of children and adolescents with osteogenesis imperfecta: A cross-sectional study using PedsQL™. BMC Pediatrics, 18, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Needham, M., Packman, W., Quinn, N., Rappoport, M., Aoki, C., Bostrom, A., et al. (2015). Health-related quality of life in patients with MPS II. Journal of Genetic Counseling, 24, 635–644. https://doi.org/10.1007/s10897-014-9791-7

    Article  PubMed  Google Scholar 

  36. Murali, C. N., Lalani, S. R., Azamian, M. S., Miyake, C. Y., & Smith, H. S. (2022). Quality of life, illness perceptions, and parental lived experiences in TANGO2-related metabolic encephalopathy and arrhythmias. European Journal of Human Genetics, 30, 1044–1050. https://doi.org/10.1038/s41431-022-01127-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nutakki, K., Varni, J. W., & Swigonski, N. L. (2018). PedsQL Neurofibromatosis Type 1 Module for children, adolescents and young adults: Feasibility, reliability, and validity. Journal of Neuro-oncology, 137, 337–347. https://doi.org/10.1007/s11060-017-2723-2

    Article  PubMed  Google Scholar 

  38. Iannaccone, S. T., Hynan, L. S., Morton, A., Buchanan, R., Limbers, C. A., & Varni, J. W. (2009). The PedsQL™ in pediatric patients with spinal muscular atrophy: Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory™ Generic Core Scales and Neuromuscular Module. Neuromuscular Disorders, 19, 805–812. https://doi.org/10.1016/j.nmd.2009.09.009

    Article  PubMed  Google Scholar 

  39. Uzark, K., King, E., Cripe, L., Spicer, R., Sage, J., Kinnett, K., et al. (2012). Health-related quality of life in children and adolescents with Duchenne muscular dystrophy. Pediatrics, 130, e1559-1566. https://doi.org/10.1542/peds.2012-0858

    Article  PubMed  Google Scholar 

  40. Kourtidou, S., Slee, A. E., Bruce, M. E., Wren, H., Mangione-Smith, R. M., & Portman, M. A. (2018). Kawasaki disease substantially impacts health-related quality of life. Journal of Pediatrics, 193, 155-163.e5. https://doi.org/10.1016/j.jpeds.2017.09.070

    Article  PubMed  Google Scholar 

  41. Amendola, L. M., Berg, J. S., Horowitz, C. R., Angelo, F., Bensen, J. T., Biesecker, B. B., et al. (2018). The clinical sequencing evidence-generating research consortium: Integrating genomic sequencing in diverse and medically underserved populations. American Journal of Human Genetics, 103, 319–327. https://doi.org/10.1016/j.ajhg.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goddard, K. A., Angelo, F. A., Ackerman, S. L., Berg, J. S., Biesecker, B. B., Danila, M. I., et al. (2020). Lessons learned about harmonizing survey measures for the CSER consortium. Journal of Clinical and Translational Science, 4(6), 537–546. https://doi.org/10.1017/cts.2020.41

    Article  PubMed  PubMed Central  Google Scholar 

  43. Staley, B. S., Milko, L. V., Waltz, M., Griesemer, I., Mollison, L., Grant, T. L., et al. (2021). Evaluating the clinical utility of early exome sequencing in diverse pediatric outpatient populations in the North Carolina Clinical Genomic Evaluation of Next-generation Exome Sequencing (NCGENES) 2 study: A randomized controlled trial. Trials, 22, 395. https://doi.org/10.1186/s13063-021-05341-2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Odgis, J. A., Gallagher, K. M., Suckiel, S. A., Donohue, K. E., Ramos, M. A., Kelly, N. R., et al. (2021). The NYCKidSeq project: Study protocol for a randomized controlled trial incorporating genomics into the clinical care of diverse New York City children. Trials, 22, 56. https://doi.org/10.1186/s13063-020-04953-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Find Shortage Areas by Address n.d. https://data.hrsa.gov/tools/shortage-area/by-address (accessed March 4, 2023).

  46. Wille, N., Badia, X., Bonsel, G., Burström, K., Cavrini, G., Devlin, N., et al. (2010). Development of the EQ-5D-Y: A child-friendly version of the EQ-5D. Quality of Life Research, 19, 875–886.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419–456.

    Article  Google Scholar 

  48. Kline, R. B. (1998). Structural equation modeling. N Y Guilford.

  49. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55.

    Article  Google Scholar 

  50. Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics (Vol. 6). Pearson.

    Google Scholar 

  51. American Educational Research Association, American Psychological Association, National Council on Measurement in Education. (2014). Standards for educational and psychological testing. American Educational Research Association.

    Google Scholar 

  52. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. https://doi.org/10.1037/0033-2909.112.1.155

    Article  CAS  PubMed  Google Scholar 

  53. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.

    Article  Google Scholar 

  54. Jones, K. M., O’Grady, G., Rodrigues, M. J., Ranta, A., Roxburgh, R. H., Love, D. R., et al. (2018). Impacts for children living with genetic muscle disorders and their parents: Findings from a population-based study. Journal of Neuromuscular Diseases, 5, 341–352. https://doi.org/10.3233/JND-170287

    Article  PubMed  Google Scholar 

  55. Smith, H., Hickingbotham, M. R., Deloge, R. B., Khan, F., & Hanmer, J. (2023). PCR128 measurement of health-related quality of life in pediatric genetic conditions: A scoping review. Value Health, 26, S335. https://doi.org/10.1016/j.jval.2023.03.1904

    Article  Google Scholar 

  56. Brown, T. A. (2006). Confirmatory factor analysis for applied research. The Guilford Press.

    Google Scholar 

  57. Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110, 305–314. https://doi.org/10.1037/0033-2909.110.2.305

    Article  Google Scholar 

  58. Kelly, C. B., Soley-Bori, M., Lingam, R., Forman, J., Cecil, L., Newham, J., et al. (2023). Mapping PedsQL™ scores to CHU9D utility weights for children with chronic conditions in a multi-ethnic and deprived metropolitan population. Quality of Life Research, 32, 1909–1923. https://doi.org/10.1007/s11136-023-03359-4

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jiao, B., Hankins, J. S., Devine, B., Barton, M., Bender, M., & Basu, A. (2022). Application of validated mapping algorithms between generic PedsQL scores and utility values to individuals with sickle cell disease. Quality of Life Research, 31, 2729–2738. https://doi.org/10.1007/s11136-022-03167-2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shafie, A. A., Chhabra, I. K., Wong, J. H. Y., & Mohammed, N. S. (2021). Mapping PedsQL™ Generic Core Scales to EQ-5D-3L utility scores in transfusion-dependent thalassemia patients. The European Journal of Health Economics, 22, 735–747. https://doi.org/10.1007/s10198-021-01287-z

    Article  PubMed  Google Scholar 

  61. Xiong, X., Dalziel, K., Huang, L., Mulhern, B., & Carvalho, N. (2023). How do common conditions impact health-related quality of life for children? Providing guidance for validating pediatric preference-based measures. Health and Quality of Life Outcomes, 21, 8. https://doi.org/10.1186/s12955-023-02091-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Clinical Sequencing Evidence-Generating Research (CSER) consortium is funded by the National Human Genome Research Institute (NHGRI) with co-funding from the National Institute on Minority Health and Health Disparities (NIMHD) and the National Cancer Institute (NCI), supported by U01HG006487 (UNC), U01HG007292 (KPNW), U01HG009610 (Mt Sinai), U01HG006485 (Baylor), U01HG009599 (UCSF), U01HG007301 (HudsonAlpha), and U24HG007307 (Coordinating Center). HSS is supported by an NHGRI career development award (K99HG011491). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. More information about CSER can be found at https://cser-consortium.org/.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data analysis was performed by ML. The first draft of the manuscript was written by HSS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hadley Stevens Smith.

Ethics declarations

Conflict of interest

Dr. Smith reports receiving consulting income from Illumina, Inc. unrelated to this work. The other authors declare no competing interests.

Ethics approval

Institutional Review Board approval was obtained for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, H.S., Leo, M., Goddard, K. et al. Measuring health-related quality of life in children with suspected genetic conditions: validation of the PedsQL proxy-report versions. Qual Life Res (2024). https://doi.org/10.1007/s11136-024-03623-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11136-024-03623-1

Keywords

Navigation