Skip to main content
Log in

Variable selection for discrete competing risks models

  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

In competing risks models one distinguishes between several distinct target events that end duration. Since the effects of covariates are specific to the target events, the model contains a large number of parameters even when the number of predictors is not very large. Therefore, reduction of the complexity of the model, in particular by deletion of all irrelevant predictors, is of major importance. A selection procedure is proposed that aims at selection of variables rather than parameters. It is based on penalization techniques and reduces the complexity of the model more efficiently than techniques that penalize parameters separately. An algorithm is proposed that yields stable estimates. We consider reduction of complexity by variable selection in two applications, the evolution of congressional careers of members of the US congress and the duration of unemployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  Google Scholar 

  • Beyersmann, J., Allignol, A., Schumacher, M.: Competing Risks and Multistate Models with R. Springer, New York (2011)

    Google Scholar 

  • Box-Steffensmeier, J.M., Jones, B.S.: Event History Modeling: A Guide for Social Scientists. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  • Candes, E., Tao, T.: The dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313–2351 (2007)

    Article  Google Scholar 

  • Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979)

    Article  Google Scholar 

  • Eilers, P.H., Marx, B.D.: Flexible smoothing with b-splines and penalties. Stat. Sci. 11, 89–121 (1996)

    Article  Google Scholar 

  • Enberg, J., Gottschalk, P., Wolf, D.: A random-effects logit model of work-welfare transitions. J. Econ. 43, 63–75 (1990)

    Article  Google Scholar 

  • Fahrmeir, L., Tutz, G.: Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  • Fahrmeir, L., Wagenpfeil, S.: Smoothing hazard functions and time-varying effects in discrete duration and competing risks models. J. Am. Stat. Assoc. 91, 1584–1594 (1996)

    Article  Google Scholar 

  • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  Google Scholar 

  • Gertheiss, J., Tutz, G.: Penalized regression with ordinal predictors. Int. Stat. Rev. 77, 345–365 (2009)

    Article  Google Scholar 

  • Han, A., Hausman, J.A.: Flexible parametric estimation of duration and competing risk models. J. Appl. Econ. 5(1), 1–28 (1990)

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  • Jones, B.: A Longitudinal Perspective on Congressional Elections. Ph. D. thesis, State University of New York at Stony Brook (1994)

  • Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, 2nd edn. Wiley, New York (2002)

    Book  Google Scholar 

  • Kauermann, G., Khomski, P.: Full time or part time reemployment: a competing risk model with frailties and smooth effects using a penalty based approach. J. Comput. Gr. Stat. 18, 106–125 (2009)

    Article  Google Scholar 

  • Klein, J., Moeschberger, M.: Survival Analysis: Statistical Methods for Censored and Truncated Data, 2nd edn. Springer, New York (2003)

    Google Scholar 

  • Kleinbaum, D.G., Klein, M.: Survival Analysis: A Self-learning Text, 3rd edn. Springer, New York (2013)

    Google Scholar 

  • Krishnapuram, B., Carin, L., Figueiredo, M.A., Hartemink, A.J.: Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27, 957–968 (2005)

    Article  Google Scholar 

  • Narendranathan, W., Stewart, M.B.: Modelling the probability of leaving unemployment: competing risks models with flexible base-line hazards. Appl. Stat. 42(1), 63–83 (1993)

    Article  Google Scholar 

  • Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)

    Google Scholar 

  • Pößnecker, W.: MRSP: Multinomial Response Models with Structured Penalties. R package version 0.4.3. (2014)

  • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2014)

    Google Scholar 

  • Simon, N., Friedman, J., Hastie, T.: A blockwise descent algorithm for group-penalized multiresponse and multinomial regression. arXiv preprint (2013)

  • Steele, F., Goldstein, H., Browne, W.: A general multilevel multistate competing risks model for event history data, with an application to a study of contraceptive use dynamics. Stat. Model. 4(2), 145–159 (2004)

    Article  Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    Google Scholar 

  • Tutz, G.: Competing risks models in discrete time with nominal or ordinal categories of response. Quality Quant. 29, 405–420 (1995)

    Article  Google Scholar 

  • Tutz, G.: Regression for Categorical Data. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  • Tutz, G., Pößnecker, W., Uhlmann, L.: Variable selection in general multinomial logit models. Comput. Stat. Data Anal. 82, 207–222 (2015)

    Article  Google Scholar 

  • Wang, H., Leng, C.: A note on adaptive group lasso. Comput. Stat. Data Anal. 52, 5277–5286 (2008)

    Article  Google Scholar 

  • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68, 49–67 (2006)

    Article  Google Scholar 

  • Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)

    Article  Google Scholar 

  • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301–320 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Pößnecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möst, S., Pößnecker, W. & Tutz, G. Variable selection for discrete competing risks models. Qual Quant 50, 1589–1610 (2016). https://doi.org/10.1007/s11135-015-0222-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-015-0222-0

Keywords

Navigation