Skip to main content
Log in

Stochastic bounds in Fork–Join queueing systems under full and partial mapping

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In a Fork–Join (FJ) queueing system, an upstream fork station splits incoming jobs into N tasks to be further processed by N parallel servers, each with its own queue; the response time of one job is determined, at a downstream join station, by the maximum of the corresponding tasks’ response times. This queueing system is useful to the modeling of multi-service systems subject to synchronization constraints, such as MapReduce clusters or multipath routing. Despite their apparent simplicity, FJ systems are hard to analyze. This paper provides the first computable stochastic bounds on the waiting and response time distributions in FJ systems under full (bijective) and partial (injective) mapping of tasks to servers. We consider four practical scenarios by combining (1a) renewal and (1b) non-renewal arrivals, and (2a) non-blocking and (2b) blocking servers. In the case of non-blocking servers, we prove that delays scale as \(\mathcal {O}(\log N)\), a law which is known for first moments under renewal input only. In the case of blocking servers, we prove that the same factor of \(\log N\) dictates the stability region of the system. Simulation results indicate that our bounds are tight, especially at high utilizations, in all four scenarios. A remarkable insight gained from our results is that, at moderate to high utilizations, multipath routing “makes sense” from a queueing perspective for two paths only, i.e., response times drop the most when \(N=2\); the technical explanation is that the resequencing (delay) price starts to quickly dominate the tempting gain due to multipath transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abate, J., Choudhury, G.L., Whitt, W.: Exponential approximations for tail probabilities in queues, I: waiting times. Oper. Res. 43, 885–901 (1995)

    Article  Google Scholar 

  2. Amazon Elastic Compute Cloud EC2. http://aws.amazon.com/ec2

  3. Babu, S.: Towards automatic optimization of MapReduce programs. In: Proceedings of ACM SoCC, pp. 137–142 (2010)

  4. Baccelli, F., Gelenbe, E., Plateau, B.: An end-to-end approach to the resequencing problem. J. ACM 31(3), 474–485 (1984)

    Article  Google Scholar 

  5. Baccelli, F., Makowski, A.M., Shwartz, A.: The Fork–Join queue and related systems with synchronization constraints: stochastic ordering and computable bounds. Adv. Appl. Probab. 21(3), 629–660 (1989)

    Article  Google Scholar 

  6. Balsamo, S., Donatiello, L., Van Dijk, N.M.: Bound performance models of heterogeneous parallel processing systems. IEEE Trans. Parallel Distrib. Syst. 9(10), 1041–1056 (1998)

    Article  Google Scholar 

  7. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)

    Google Scholar 

  8. Boxma, O., Koole, G., Liu, Z.: Queueing-theoretic solution methods for models of parallel and distributed systems. In: Proceedings of Performance Evaluation of Parallel and Distributed Systems. CWI Tract 105, pp. 1–24 (1994)

  9. Buffet, E., Duffield, N.G.: Exponential upper bounds via martingales for multiplexers with Markovian arrivals. J. Appl. Probab. 31(4), 1049–1060 (1994)

    Article  Google Scholar 

  10. Chang, C.S.: Performance Guarantees in Communication Networks. Springer, New York (2000)

    Book  Google Scholar 

  11. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data systems: a cross-industry study of mapreduce workloads. Proc. VLDB Endow. 5(12), 1802–1813 (2012)

    Article  Google Scholar 

  12. Ciucu, F., Poloczek, F., Schmitt, J.: Sharp per-flow delay bounds for bursty arrivals: the case of FIFO, SP, and EDF scheduling. In: Proceedings of IEEE INFOCOM, pp. 1896–1904 (2014)

  13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  14. Duffield, N.: Exponential bounds for queues with Markovian arrivals. Queueing Syst. 17(3–4), 413–430 (1994)

    Article  Google Scholar 

  15. Flatto, L., Hahn, S.: Two parallel queues created by arrivals with two demands I. SIAM J. Appl. Math. 44(5), 1041–1053 (1984)

    Article  Google Scholar 

  16. Ganesh, A., O’Connell, N., Wischik, D.: Big Queues. No. 1838 in Lecture Notes in Mathematics. Springer, New York (2004)

    Google Scholar 

  17. Gibbens, R.J.: Traffic characterisation and effective bandwidths for broadband network traces. J. R. Stat. Soc. Ser. B. Stat. Methodol. 4, 169–179 (1996)

  18. Han, Y., Makowski, A.: Resequencing delays under multipath routing—asymptotics in a simple queueing model. In: Proceedings of IEEE INFOCOM, pp. 1–12 (2006)

  19. Harrus, G., Plateau, B.: Queueing analysis of a reordering issue. IEEE Trans. Softw. Eng. 8(2), 113–123 (1982)

    Article  Google Scholar 

  20. Jiang, Y., Liu, Y.: Stochastic Network Calculus. Springer, New York (2008)

    Google Scholar 

  21. Joshi, G., Liu, Y., Soljanin, E.: Coding for fast content download. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, pp. 326–333 (2012)

  22. Joshi, G., Liu, Y., Soljanin, E.: On the delay-storage trade-off in content download from coded distributed storage systems. IEEE J. Sel. Areas Commun. 32(5), 989–997 (2014)

    Article  Google Scholar 

  23. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., Chaiken, R.: The nature of data center traffic: measurements & analysis. In: Proceedings of ACM IMC, pp. 202–208 (2009)

  24. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An analysis of traces from a production MapReduce cluster. In: Proceedings of IEEE/ACM CCGRID, pp. 94–103 (2010)

  25. Kemper, B., Mandjes, M.: Mean sojourn times in two-queue Fork–Join systems: bounds and approximations. OR Spectr. 34(3), 723–742 (2012)

    Article  Google Scholar 

  26. Kesidis, G., Urgaonkar, B., Shan, Y., Kamarava, S., Liebeherr, J.: Network calculus for parallel processing. In: Proceedings of the ACM MAMA Workshop (2015)

  27. Kingman, J.F.C.: Inequalities in the theory of queues. J. R. Stat. Soc. Ser. B. Stat. Methodol. 32(1), 102–110 (1970)

    Google Scholar 

  28. Ko, S.S., Serfozo, R.F.: Sojourn times in G/M/1 Fork–Join networks. Naval Res. Logist. 55(5), 432–443 (2008)

    Article  Google Scholar 

  29. Lebrecht, A.S., Knottenbelt, W.J.: Response time approximations in Fork–Join queues. In: Proceedings of UKPEW (2007)

  30. Lu, H., Pang, G.: Gaussian limits for a Fork–Join network with nonexchangeable synchronization in heavy traffic. Math. Oper. Res. 41(2), 560–595 (2016)

    Article  Google Scholar 

  31. Nelson, R., Tantawi, A.: Approximate analysis of Fork/Join synchronization in parallel queues. IEEE Trans. Comput. 37(6), 739–743 (1988)

    Article  Google Scholar 

  32. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with Sawzall. Sci. Program. 13(4), 277–298 (2005)

    Google Scholar 

  33. Polato, I., Ré, R., Goldman, A., Kon, F.: A comprehensive view of Hadoop research—a systematic literature review. J. Netw. Comput. Appl. 46, 1–25 (2014)

    Article  Google Scholar 

  34. Poloczek, F., Ciucu, F.: Scheduling analysis with martingales. Perform. Eval. 79, 56–72 (2014)

    Article  Google Scholar 

  35. Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M.: Improving datacenter performance and robustness with multipath TCP. SIGCOMM Comput. Commun. Rev. 41(4), 266–277 (2011)

    Article  Google Scholar 

  36. Rényi, A.: On the theory of order statistics. Acta Math. Hung. 4(3—-4), 191–231 (1953)

    Article  Google Scholar 

  37. Tan, J., Meng, X., Zhang, L.: Delay tails in MapReduce scheduling. SIGMETRICS Perform. Eval. Rev. 40(1), 5–16 (2012)

    Article  Google Scholar 

  38. Tan, J., Wang, Y., Yu, W., Zhang, L.: Non-work-conserving effects in MapReduce: diffusion limit and criticality. SIGMETRICS Perform. Eval. Rev. 42(1), 181–192 (2014)

    Article  Google Scholar 

  39. Varki, E.: Mean value technique for closed Fork–Join networks. SIGMETRICS Perform. Eval. Rev. 27(1), 103–112 (1999)

    Article  Google Scholar 

  40. Varma, S., Makowski, A.M.: Interpolation approximations for symmetric Fork–Join queues. Perform. Eval. 20(1–3), 245–265 (1994)

    Article  Google Scholar 

  41. Vianna, E., Comarela, G., Pontes, T., Almeida, J., Almeida, V., Wilkinson, K., Kuno, H., Dayal, U.: Analytical performance models for MapReduce workloads. Int. J. Parallel Program. 41(4), 495–525 (2013)

    Article  Google Scholar 

  42. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Inc., Sebastopol (2009)

    Google Scholar 

  43. Xia, Y., Tse, D.: On the large deviation of resequencing queue size: 2-M/M/1 case. IEEE Trans. Inf. Theory 54(9), 4107–4118 (2008)

    Article  Google Scholar 

  44. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce performance in heterogeneous environments. In: Proceedings of USENIX OSDI, pp. 29–42 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Rizk.

Additional information

Part of the work by A. Rizk was funded by the German Research Foundation within the Collaborative Research Centre 1053 – MAKI.

Appendix

Appendix

We assume throughout the paper that all probabilistic objects are defined on a common filtered probability space \(\left( \Omega ,\mathcal {A},\left( \mathcal {F}_n\right) _n,\mathsf {P}\right) \). All processes \(\left( X_n\right) _n\) are assumed to be adapted, i.e., for each \(n\ge 0\), the random variable \(X_n\) is \(\mathcal {F}_n\)-measurable.

Definition 1

(Martingale) An integrable process \(\left( X_n\right) _n\) is a martingale if and only if for each \(n\ge 1\)

$$\begin{aligned} \mathsf {E}\left[ {X_{n}\mid \mathcal {F}_{n-1}}\right] =X_{n-1}. \end{aligned}$$
(44)

Further, X is said to be a sub-(super-)martingale if in (44) we have \(\ge \) (\(\le \)) instead of equality.

The key property of (sub, super)-martingales that we use in this paper is described by the following lemma:

Lemma 1

(Optional Sampling Theorem) Let \(\left( X_n\right) _n\) be a martingale, and K a bounded stopping time, i.e., \(K\le n\) a.s. for some \(n\ge 0\) and \(\{K=k\}\in \mathcal {F}_k\) for all \(k\le n\). Then

$$\begin{aligned} \mathsf {E}\left[ {X_0}\right] =\mathsf {E}\left[ {X_K}\right] =\mathsf {E}\left[ {X_n}\right] . \end{aligned}$$
(45)

If X is a sub-(super)-martingale, the equality sign in (45) is replaced by \(\le \) (\(\ge \)).

Proof

See, for example, [7]. \(\square \)

Note that for any (possibly unbounded) stopping time K, the stopping time \(K\wedge n\) is always bounded. We use Lemma 1 with the stopping times \(K\wedge n\) in the proofs of Theorems 1, 2, 3 and 4.

Lemma 2

Let \(c_k\) be the Markov chain from Fig. 4 and K be the stopping time from (11). Then the distribution of \((c_K\mid K<\infty )\) is stochastically smaller than the steady-state distribution of \(c_k\), i.e.,

$$\begin{aligned} \mathsf {P}\left[ {c_K=2\mid K<\infty }\right] \le \mathsf {P}\left[ {c_1=2}\right] , \end{aligned}$$

or, equivalently,

$$\begin{aligned} \mathsf {E}\left[ {h(c_K)}\mid {K<\infty }\right] \ge \mathsf {E}\left[ {h(c_k)}\right] , \end{aligned}$$

for all monotonically decreasing functions h on \(\{1,2\}\).

Proof

Using Bayes’ rule and the stationarity of the process \(c_k\), we have:

$$\begin{aligned} \mathsf {P}\left[ {c_K=2\mid K<\infty }\right]&=\sum _{k=1}^{\infty }\mathsf {P}\left[ {c_k=2\mid K=k}\right] \mathsf {P}\left[ {K=k}\right] \\&= \sum _{k=1}^{\infty }\mathsf {P}\left[ {K=k\mid c_k=2}\right] \mathsf {P}\left[ {c_k=2}\right] \\&= \mathsf {P}\left[ {c_1=2}\right] \sum _{k=1}^{\infty }\mathsf {P}\left[ {K=k\mid c_k=2}\right] . \end{aligned}$$

Since \(L_1\) is stochastically smaller than \(L_2\), we have for any \(k\ge 1\)

$$\begin{aligned} \mathbb {P}&[K=k\mid c_k=2]\\&=\mathsf {P}\left[ {t_k\le \max _n\sum _{i=1}^k x_{n,i}-\sum _{i=1}^{k-1}t_i-\sigma , \max _n\sum _{i=1}^{k-1}(x_{n,i}-t_i)<\sigma \mathrel {\bigg |} c_k=2}\right] \\&\le \mathsf {P}\left[ {t_k\le \max _n\sum _{i=1}^kx_{n,i} -\sum _{i=1}^{k-1}t_i-\sigma , \max _n\sum _{i=1}^{k-1}(x_{n,i}-t_i)<\sigma }\right] \\&=\mathsf {P}\left[ {K=k}\right] . \end{aligned}$$

Hence \(\sum _{k=1}^{\infty }\mathsf {P}\left[ {K=k\mid c_k=2}\right] \le 1\), which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizk, A., Poloczek, F. & Ciucu, F. Stochastic bounds in Fork–Join queueing systems under full and partial mapping. Queueing Syst 83, 261–291 (2016). https://doi.org/10.1007/s11134-016-9486-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-016-9486-x

Keywords

Mathematics Subject Classification

Navigation