Skip to main content
Log in

Sorghum Pasta and Noodles: Technological and Nutritional Aspects

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Sorghum is a major cereal crop with various agronomic advantages, contains health-promoting compounds and is gluten-free. There is a growing tendency to use sorghum in pasta and noodle formulations, which are among the most widely consumed products in the world, but its potential benefits in human diet are not being fully exploited. Here we review research carried out during the past few years on the use of sorghum as the main ingredient or as an additive in pasta and noodles, highlighting its properties and production technology. Pasta and noodles can be produced with 5 to 100% of sorghum at laboratory, pilot or industrial scale with suitable cooking and textural quality coupled with distinctive sensory attributes. Cooking loss shows minimum values of 0.85 and 1.9 g/100 g for pasta and noodles, respectively, and high water absorption (up to 345 g/100 g). The interesting nutritional profile of the products generally includes up to 45% resistant starch (RS) and phenolic compound content with high antioxidant activity. In addition, tannins decrease starch digestibility 15–20%, producing low glycemic index (GI) products (below 65). This is especially important for celiac people, offering them the alternative of gluten-free sorghum pasta and noodles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Taylor JRN, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271. https://doi.org/10.1016/j.jcs.2006.06.009

    Article  CAS  Google Scholar 

  2. Pérez A, Saucedo O, Iglesias J, Wencomo HB, Reyes F, Oquendo G, Milián I (2010) Caracterización y potencialidades del grano de sorgo (Sorghum bicolor L. Moench). Pastos y Forrajes 33:3–25

  3. Beta T, Obilana AB, Corke H (2001) Genetic diversity in properties of starch from Zimbabwean sorghum landraces. Cereal Chem J 78:583–589. https://doi.org/10.1094/CCHEM.2001.78.5.583

    Article  CAS  Google Scholar 

  4. Kamble DB, Singh R, Rani S, Kaur BP, Upadhyay A, Kumar N (2019) Optimization and characterization of antioxidant potential, in vitro protein digestion and structural attributes of microwave processed multigrain pasta. J Food Process Preserv 43:1–11. https://doi.org/10.1111/jfpp.14125

  5. Ratnavathi C, Patil J (2014) Sorghum utilization as food. J Nutr Food Sci 04:1–8. https://doi.org/10.4172/2155-9600.1000247

    Article  CAS  Google Scholar 

  6. Léder I (2004) Sorghum and millets. In: Füleky G (ed) Cultivated plants, primarily as food sources. Encyclopedia of Life Support Systems (EOLSS), Oxford, UK, pp 66–84

  7. Noerhartati E, Karyati PD, Soepriyono S, Yunarko B (2019) Entrepreneurship sorghum towards industry 4.0. In: Proceedings of the international conference on innovation in research (ICIIR 2018) – section: economics and management science. Atlantis Press, Paris, pp 6–9

    Google Scholar 

  8. Taylor JRN, Belton PS (2002) Sorghum. In: Pseudocereals and less common cereals. Springer, Berlin, Heidelberg, pp 25–91

    Chapter  Google Scholar 

  9. Kulamarva AG, Sosle VR, Raghavan GSV (2009) Nutritional and rheological properties of sorghum. Int J Food Prop 12:55–69. https://doi.org/10.1080/10942910802252148

    Article  CAS  Google Scholar 

  10. Anglani C (1998) Sorghum for human food - a review. Plant Foods Hum Nutr 52:85–95. https://doi.org/10.1023/A:1008065519820

    Article  CAS  PubMed  Google Scholar 

  11. Awika JM, Rooney LW, Waniska RD (2005) Anthocyanins from black sorghum and their antioxidant properties. Food Chem 90:293–301. https://doi.org/10.1016/j.foodchem.2004.03.058

    Article  CAS  Google Scholar 

  12. Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251. https://doi.org/10.1016/j.jcs.2006.06.007

    Article  CAS  Google Scholar 

  13. Schofield P, Mbugua D, Pell A (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40. https://doi.org/10.1016/S0377-8401(01)00228-0

    Article  CAS  Google Scholar 

  14. Llopart EE, Drago SR, De Greef DM, Torres RL, González RJ (2013) Effects of extrusion conditions on physical and nutritional properties of extruded whole grain red sorghum (Sorghum spp). Int J Food Sci Nutr 7486:1–8. https://doi.org/10.3109/09637486.2013.836737

  15. Fasano A, Catassi C (2012) Celiac disease. N Engl J Med 367:2419–2426. https://doi.org/10.1056/NEJMcp1113994

    Article  CAS  PubMed  Google Scholar 

  16. Gómez M, Sciarini L (2015) Gluten-free bakery products and pasta. In: Advances in the understanding of gluten related pathology and the evolution of gluten-free foods. Omnia Science, pp 565–604

  17. Ferreira SMR, de Mello AP, de Caldas Rosa dos Anjos M, CCH K, Azoubel PM, de Oliveira Alves MA (2016) Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta. Food Chem 191:147–151. https://doi.org/10.1016/j.foodchem.2015.04.085

    Article  CAS  PubMed  Google Scholar 

  18. Palavecino PM, Bustos MC, Heinzmann Alabí MB, Nicolazzi MS, Penci MC, Ribotta PD (2017) Effect of ingredients on the quality of gluten-free sorghum pasta. J Food Sci 82:2085–2093. https://doi.org/10.1111/1750-3841.13821

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Duan W, Zhou S, Qian H, Zhang H, Qi X (2016) Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chem 204:320–325. https://doi.org/10.1016/j.foodchem.2016.02.053

    Article  CAS  PubMed  Google Scholar 

  20. Bustos MC, Perez GT, Leon AE (2015) Structure and quality of pasta enriched with functional ingredients. RSC Adv 5:30780–30792. https://doi.org/10.1039/C4RA11857J

    Article  CAS  Google Scholar 

  21. Camelo-Méndez GA, Ferruzzi MG, González-Aguilar GA, Bello-Pérez LA (2016) Carbohydrate and phytochemical digestibility in pasta. Food Eng Rev 8:76–89. https://doi.org/10.1007/s12393-015-9117-z

    Article  CAS  Google Scholar 

  22. Akajiaku L, Nwosu J, Kabuo N, Odimegwu E, Umelo M, Unegbu V (2017) Using sorghum flour as part substitute of wheat flour in noodles making. MOJ Food Process Technol 5:250–257. https://doi.org/10.15406/mojfpt.2017.05.00120

    Article  Google Scholar 

  23. Palavecino PM, Penci MC, Calderón-Domínguez G, Ribotta PD (2016) Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina. Starch - Stärke 68:1055–1064. https://doi.org/10.1002/star.201600111

    Article  CAS  Google Scholar 

  24. Pineli LLO, Zandonadi RP, Botelho RBA, De Oliveria VR, De Alencar Figuereido LF (2015) The use of sorghum to produce gluten-free breads (GFB): a systematic review. J Adv Nutr Hum Metab 2:e994. https://doi.org/10.14800/janhm.944

  25. Hager A-S, Wolter A, Jacob F, Zannini E, Arendt EK (2012) Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J Cereal Sci 56:239–247. https://doi.org/10.1016/j.jcs.2012.06.005

    Article  CAS  Google Scholar 

  26. Susanna S, Prabhasankar P (2012) Quality, microstructure, biochemical and immunochemical characteristics of hypoallergenic pasta. Food Sci Technol Int 18:403–411. https://doi.org/10.1177/1082013211428217

    Article  CAS  PubMed  Google Scholar 

  27. Susanna S, Prabhasankar P (2013) A study on development of gluten free pasta and its biochemical and immunological validation. LWT - Food Sci Technol 50:613–621. https://doi.org/10.1016/j.lwt.2012.07.040

    Article  CAS  Google Scholar 

  28. Benhur DR, Bhargavi G, Kalpana K, Vishala AD, Ganapathy KN, Patil JV (2015) Development and standardization of sorghum pasta using extrusion technology. J Food Sci Technol 52:6828–6833. https://doi.org/10.1007/s13197-015-1801-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marengo M, Bonomi F, Marti A, Pagani MA, Elkhalifa AEO, Iametti S (2015) Molecular features of fermented and sprouted sorghum flours relate to their suitability as components of enriched gluten-free pasta. LWT - Food Sci Technol 63:1–8. https://doi.org/10.1016/j.lwt.2015.03.070

    Article  CAS  Google Scholar 

  30. Paux L, Rosentrater KA (2018) Development of gluten-free egg pasta based on amaranth, maize and sorghum. J Food Res 7:16. https://doi.org/10.5539/jfr.v7n6p16

    Article  CAS  Google Scholar 

  31. Rao BD, Kiranmai E, Hariprasanna K, Tonapi VA (2018) Studies on ready to cook gingelly fortified extruded food-sorghum pasta. Int J Chem Stud 6:2460–2464

    Google Scholar 

  32. Paiva CL, Queiroz VAV, Garcia MAVT (2019) Características tecnológicas, sensoriais e químicas de massas secas sem glúten à base de farinhas de sorgo e milho. Braz J Food Technol 22. https://doi.org/10.1590/1981-6723.09518

  33. Schober TJ, Messerschmidt M, Bean SR, Park S, Arendt EK (2005) Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chem J 82:394–404. https://doi.org/10.1094/CC-82-0394

    Article  CAS  Google Scholar 

  34. Liu L, Herald TJ, Wang D, Wilson JD, Bean SR, Aramouni FM (2012) Characterization of sorghum grain and evaluation of sorghum flour in a Chinese egg noodle system. J Cereal Sci 55:31–36. https://doi.org/10.1016/j.jcs.2011.09.007

    Article  Google Scholar 

  35. Suhendro E, Kunetz C, McDonough CM, Rooney LW, Waniska RD (2000) Cooking characteristics and quality of noodles from food sorghum. Cereal Chem J 77:96–100. https://doi.org/10.1094/CCHEM.2000.77.2.96

    Article  CAS  Google Scholar 

  36. Tam LM, Corke H, Tan WT, Li J, Collado LS (2004) Production of bihon-type noodles from maize starch differing in amylose content. Cereal Chem 81:475–480. https://doi.org/10.1094/CCHEM.2004.81.4.475

    Article  CAS  Google Scholar 

  37. Bustos MC, Perez GT, Leon AE (2011) Effect of four types of dietary fiber on the technological quality of pasta. Food Sci Technol Int 17:213–221. https://doi.org/10.1177/1082013210382303

    Article  CAS  PubMed  Google Scholar 

  38. Marti A, Seetharaman K, Pagani MA (2010) Rice-based pasta: a comparison between conventional pasta-making and extrusion-cooking. J Cereal Sci 52:404–409. https://doi.org/10.1016/j.jcs.2010.07.002

    Article  Google Scholar 

  39. Beta T, Corke H (2001) Noodle quality as related to sorghum starch properties. Cereal Chem 78:417–420. https://doi.org/10.1094/CCHEM.2001.78.4.417

    Article  CAS  Google Scholar 

  40. Marti A, Pagani MA (2013) What can play the role of gluten in gluten free pasta? Trends Food Sci Technol 31:63–71. https://doi.org/10.1016/j.tifs.2013.03.001

    Article  CAS  Google Scholar 

  41. Awika JM, McDonough CM, Rooney LW (2005) Decorticating sorghum to concentrate healthy phytochemicals. J Agric Food Chem 53:6230–6234. https://doi.org/10.1021/jf0510384

    Article  CAS  PubMed  Google Scholar 

  42. Khan I, Yousif A, Johnson SK, Gamlath S (2013) Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res Int 54:578–586. https://doi.org/10.1016/j.foodres.2013.07.059

    Article  CAS  Google Scholar 

  43. Dexter RR, Matsuo JE (1979) Effect of starch on pasta dough rheology and spaghetti cooking quality. Cereal Chem 56:190–195

    Google Scholar 

  44. Rani S, Singh R, Kaur BP, Upadhyay A, Kamble DB (2018) Optimization and evaluation of multigrain gluten-enriched instant noodles. Appl Biol Chem 61:531–541. https://doi.org/10.1007/s13765-018-0387-z

    Article  CAS  Google Scholar 

  45. Beta T, Corke H, Rooney LW, Taylor JRN (2001) Starch properties as affected by sorghum grain chemistry. J Sci Food Agric 81:245–251. https://doi.org/10.1002/1097-0010(20010115)81:2<245::AID-JSFA805>3.0.CO;2-S

    Article  CAS  Google Scholar 

  46. Mitsoulis E, Hatzikiriakos SG (2009) Rolling of bread dough: experiments and simulations. Food Bioprod Process 87:124–138. https://doi.org/10.1016/j.fbp.2008.07.001

    Article  Google Scholar 

  47. Mirhosseini H, Abdul Rashid NF, Tabatabaee Amid B, Cheong KW, Kazemi M, Zulkurnain M (2015) Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. LWT - Food Sci Technol 63:184–190. https://doi.org/10.1016/J.LWT.2015.03.078

    Article  CAS  Google Scholar 

  48. Larrosa V, Lorenzo G, Zaritzky N, Califano A (2015) Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. J Food Eng 160:11–18. https://doi.org/10.1016/j.jfoodeng.2015.03.019

    Article  CAS  Google Scholar 

  49. Marti A, Caramanico R, Bottega G, Pagani MA (2013) Cooking behavior of rice pasta: effect of thermal treatments and extrusion conditions. LWT - Food Sci Technol 54:229–235. https://doi.org/10.1016/j.lwt.2013.05.008

    Article  CAS  Google Scholar 

  50. Krishnan M, Prabhasankar P (2012) Health based pasta: redefining the concept of the next generation convenience food. Crit Rev Food Sci Nutr 52:9–20. https://doi.org/10.1080/10408398.2010.486909

    Article  PubMed  Google Scholar 

  51. Amoako D, Awika JM (2016) Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose. Curr Opin Food Sci 8:14–18. https://doi.org/10.1016/j.cofs.2016.01.010

    Article  Google Scholar 

  52. Palavecino PM, Ribotta PD, León AE, Bustos MC (2019) Gluten-free sorghum pasta: starch digestibility and antioxidant capacity compared with commercial products. J Sci Food Agric 99:1351–1357. https://doi.org/10.1002/jsfa.9310

    Article  CAS  PubMed  Google Scholar 

  53. Khetarpaul N, Goyal R (2007) Effect of supplementation of soy, sorghum, maize, and rice on the quality of cooked noodles. Ecol Food Nutr 46:61–76. https://doi.org/10.1080/03670240601100600

    Article  Google Scholar 

  54. Prasad MPR, Rao BD, Kalpana K, Rao MV, Patil JV (2015) Glycaemic index and glycaemic load of sorghum products. J Sci Food Agric 95:1626–1630. https://doi.org/10.1002/jsfa.6861

    Article  CAS  PubMed  Google Scholar 

  55. Englyst HN, Hudson GJ (1996) The classification and measurement of dietary carbohydrates. Food Chem 57:15–21. https://doi.org/10.1016/0308-8146(96)00056-8

    Article  CAS  Google Scholar 

  56. Ashwar BA, Gani A, Shah A, Wani IA, Masoodi FA (2016) Preparation, health benefits and applications of resistant starch-a review. Starch - Stärke 68:287–301. https://doi.org/10.1002/star.201500064

    Article  CAS  Google Scholar 

  57. Cisse F, Erickson D, Hayes A, Opekun A, Nichols B, Hamaker B (2018) Traditional Malian solid foods made from sorghum and millet have markedly slower gastric emptying than rice, potato, or pasta. Nutrients 10:124. https://doi.org/10.3390/nu10020124

    Article  CAS  PubMed Central  Google Scholar 

  58. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1038/nature05488

    Article  CAS  PubMed  Google Scholar 

  59. Chhikara N, Abdulahi B, Munezero C, Kaur R, Singh G, Panghal A (2019) Exploring the nutritional and phytochemical potential of sorghum in food processing for food security. Nutr Food Sci 49:318–332. https://doi.org/10.1108/NFS-05-2018-0149

    Article  Google Scholar 

  60. Khan I, Yousif AM, Johnson SK, Gamlath S (2015) Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: a randomised controlled trial. Clin Nutr 34:415–421. https://doi.org/10.1016/j.clnu.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  61. Rocchetti G, Lucini L, Chiodelli G, Giuberti G, Gallo A, Masoero F, Trevisan M (2017) Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation. Food Res Int 97:78–86. https://doi.org/10.1016/j.foodres.2017.03.035

  62. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R (2017) Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr 58:2531–2548. https://doi.org/10.1080/10408398.2017.1331200

  63. Renard CMGC, Watrelot AA, Le Bourvellec C (2017) Interactions between polyphenols and polysaccharides: mechanisms and consequences in food processing and digestion. Trends Food Sci Technol 60:43–51. https://doi.org/10.1016/j.tifs.2016.10.022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Consejo Nacional de Ciencia y Técnica (CONICET), Agencia Nacional de Promoción Científica y Tecnológica and the Universidad Nacional de Córdoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Daniel Ribotta.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palavecino, P.M., Curti, M.I., Bustos, M.C. et al. Sorghum Pasta and Noodles: Technological and Nutritional Aspects. Plant Foods Hum Nutr 75, 326–336 (2020). https://doi.org/10.1007/s11130-020-00829-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00829-9

Keywords

Navigation